Exploring the use of UAVs for Coastal Research Purposes

Authors: Joshua Bilkey¹, Dr Hannah Buckley¹, Dr Bradley Case¹ and Graham Hinchliffe¹

School of Science, Auckland University of Technology Correspondence: Bradley.Case@aut.ac.nz or Josh.Bilkey@aut.ac.nz

Why Unmanned Aerial Vehicles (UAVs)?

- Higher resolution (centimetre scale) than satellite imagery allowing for (semi)-automated identification of plants down to species level.
- More efficient than field collection in addition to reducing trampling and potential cross-contamination effects associated with fieldwork. Can be used to supplement or in some cases replace field surveys.
- Rapid deployment therefore can be used to track temporal changes (for weeds or threatened species etc.) over multiple missions easily.
- UAVs can reach remote/hard to access areas . Therefore, allowing additional data to be generated.
- UAVs can create both a 2-D and 3-D model from a single flight mission. Allowing both vegetation classification of a 2-D image and volumetric analysis of the dune structure. This is particularly useful in tracking any morphological changes to the foredune structure and how this influences vegetation composition.

Figure 1: 5cm resolution orthomosaics of Karekare Beach created from a series of six UAV flights completed on November 7th 2018. Left Image: True Colour image where red, green and blue channels are also the red, green bands of the sensor. Right Image: Vegetation Enhanced image where bright red colours represent plants with high Near infrared reflectance (an analogue of the amount of chlorophyll produced).

Identifying coastal plant species using UAV imagery

UAVs are capable of producing centimetre-scale resolution. However, the enhanced resolution does not always equate to a better result. In many cases an individual scrub or plant can be incorrectly classified as multiple different species, the "salt-and-pepper" effect (Kelly et al., 2011). This is due to the various orientations and spectral qualities of individual leaves and branches (Kim et al., 2011).

To counteract this, Object-Based Image analysis (OBIA) can be used to delineate groups of pixels with similar attributes i.e. shape, size, colour, texture pattern, shadow and association (Blundell and Opitz, 2008).

Figure 2: 5cm 3-D Digital Surface Model of Karekare beach produced from the same November 7th 2018 flight as Figure 1. Both 2-D and 3-D models produced by Pix 4-D digital mapping software.

Figure 3: Example of object-based vs pixel based classification in an oak woodland. Source: https://frameworks.ced.berkeley.edu/2016/potential-remote-sensing-improve-landscape -research-monitoring-studied-spatial-scales/

Case Study of current sand dune research - Karekare Beach, Auckland - UAV Image Analysis

Aim: Develop and streamline processing techniques for using UAV data to identify vegetation composition of coastal environments. *Why Karekare beach?-* high diversity of species common to many NZ coastal environments (Pingao, Muehlenbeckia complexa as well as exotics such as lupin and pampas). It also had a recent field survey completed by Auckland Council in late 2017 allowing for comparison.

Methods: UAV flights over study area collecting imagery with a resolution of 5cm. A RedEdge MicaSense sensor is attached to a Phantom 4 Pro UAV to create 2-D and 3-D models of the study site. Two missions spaced 4 months apart will be used to analyse temporal changes.

Object-Based Image Analysis (OBIA) is used for plant identification creating a map of vegetation composition.

Outputs: A data processing workflow for UAV-based dune monitoring and dune restoration projects.

Assessment of advantages and limitations of UAVs in comparison to both field surveys and aerial/satellite imagery analysis.

References

Kelly, M., Blanchard, S., Kersten, E. & Koy, K. (2011). Terrestrial Remotely Sensed Imagery in Support of Public Health: New Avenues of Research Using Object-Based Image Analysis. *Remote Sensing, 3,* 2321-2345.

Kim, S., Lee, W., Kwak, D., Biging, G. S., Gong, P., Lee, J. & Cho, H.-K. (2011.). Forest Cover Classification by Optimal Segmentation of High Resolution Satellite Imagery. *Sensors*, *11*(2), 1943–1958. https://doi-org.ezproxy.aut.ac.nz/10.3390/s110201943.

Opitz D. & Blundell S. (2008) Object recognition and image segmentation: the Feature Analyst[®] approach. In: Blaschke T., Lang S., Hay G.J. (eds) *Object-Based Image Analysis. Lecture Notes in Geoinformation and Cartography.* Springer, Berlin, Heidelberg.