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Abstract 

Unmanned Arial System derived Multi-Spectral Imagery for the Monitoring of 

Coastal Dune Plant Communities 

 

by 

Michael Fake 

 

Plant community monitoring was conducted at Kaitorete Spit Scientific Reserve using UAS based 

remote sensing and traditional field-based techniques. Multispectral, high resolution UAS imagery 

was used as the basis for image classification. Different classification methods and data manipulation 

techniques were evaluated in order to present the most accurate representation of plant 

communities for comparison against those derived from the field data. Overall image classifcation 

results were on par with those from similar studies, however their suitability for application to the 

monitoring of the specific environmental and ecological conditions at Kaitorete Spit remains of low 

confidence. UAS imagery was able to be used to identify coarse scale ecological features which could 

then be used to define distinct ecological communities in a simlar but not identical manner to that 

of the field data. At a finer-scale, UAS imagery could detect some, but not all, key ecological features 

such as individual species or fine-scale indicators of diverse habitat types.   

Keywords: Remote Sensing, UAS, UAV, Drone, Image Classification, Plant Community, Vegetation, 

Coastal, Sand Dunes, Ordination, TWINSPAN, Clustering. 
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Chapter 1 

Introduction 

1.1 Remote Sensing in Ecology 

One of the principal objectives in ecology is to measure, comprehend and predict patterns in 

biodiversity (Holyoak, Leibold, Mouquet, Holt, & Hoopes, 2005). Remote sensing (RS) is the science 

of collecting information and data using non-contact and remote methods (K. Wang, Franklin, Guo, 

& Cattet, 2010). Remote sensing has great potential to revolutionise the way that we practice 

ecology, as it provides both the technology and data sources required to address large-scale issues 

(Kerr & Ostrovsky, 2003). Some of the more important advantages in the use of RS in ecology are 

the acquisition of digital information, its repeatability and the cost-benefit of the process compared 

to traditional ground-based techniques (Hall et al., 2009). Traditional ground-based methods can 

also be time-consuming and susceptible to observer based error (Turner et al., 2003). In larger 

studies that employ multiple observers to quantify and characterise vegetation, the ability to 

accurately differentiate plant species varies substantially between observers, regardless of observer 

experience (Bergstedt, Westerberg, & Milberg, 2009). The simultaneous and continuous collection 

of data from remote sensing platforms and subsequent image processing algorithms can help avoid 

these sources of observer bias (Spanhove, Vanden Borre, Delalieux, Haest, & Paelinckx, 2012). The 

ability to rapidly resurvey large areas while collecting continuous data can be valuable for when 

monitoring short-term and real-time changes in ecosystem response (A. Gitelson et al., 1993) (A. 

Gitelson et al., 1993; Verbesselt, Zeileis, & Herold, 2012; X. Zhang et al., 2003). The ability to monitor 

environments that are logistically difficult to access (He, Rocchini, Neteler, & Nagendra, 2011; 

Spanhove et al., 2012), or inherently dangerous (Şerban et al., 2016) is also a significant advantage 

when compared to field-based methods.  

Remote sensing incorporates the use of the reflectance spectra of land-cover elements captured in 

an image pixel, such as vegetation, soils and other geological materials (Turner et al., 2003). The 

reflectance of each element depends on a given objects biophysical and structural properties. For 

instance, for plants, the size, density, and structural layout of the branches and leaves will result in 

light being preferentially absorbed or scattered in different wavelengths (Underwood, Ustin, & 

Ramirez, 2007). Natural interspecific variations in biological components, such as chlorophyll and 

other pigments, water, proteins, starches and structural carbohydrates, will produce characteristic 

signatures for different species, allowing for the remote identification of species and communities 

(Carvalho, Schlerf, van der Putten, & Skidmore, 2013; Underwood et al., 2007).  
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Remote sensing of biodiversity involves two main methodologies; firstly the direct sensing of 

biodiversity at the individual, population and/or community level conducted via terrestrial (Dassot, 

Constant, & Fournier, 2011), airborne (Baldeck & Asner, 2013; Bork & Su, 2007; Bradbury et al., 2005; 

R. A. Hill & Thomson, 2005) or spaceborne sensors (Czerepowicz, Case, & Doscher, 2012; Lisita, Sano, 

& Durieux, 2013; Mathieu, Aryal, & Chong, 2007). Secondly, the indirect sensing of biodiversity 

through the use of ecological parameters as environmental and habitat indicators (Almeida-Neto & 

Ulrich, 2011; Anteau, Wiltermuth, Sherfy, & Shaffer, 2014; Buermann et al., 2008; Julian, Young, 

Jones, Snyder, & Wright, 2009; Shirley et al., 2013).  

Terrestrial remote sensing typically involves studies of ecosystem physical structure using ground-

based systems. Ground-based scanners perform better than aerial sensors at smaller scales and for 

below-canopy forest metrics (Dassot et al., 2011; Nevalainen et al., 2014). The main advantages are 

its high spatial accuracy and its non-destructive nature compared to traditional measures of forest 

attributes (Bork & Su, 2007; Hu et al., 2018; Stovall, Anderson-Teixeira, & Shugart, 2018). Ground-

based scanners are often used to augment field and aerial remote sensing data in studies of habitat 

and forest structure (Barbosa et al., 2016; Olsoy et al., 2018; Orwig et al., 2018), and can be 

employed in studies of entire forests down to the quantification of individual trees (Bayer, Seifert, 

& Pretzsch, 2013; Pyorala et al., 2018), stem (Henning & Radtke, 2006; Lau et al., 2018), or leaf 

attributes (Elsherif, Gaulton, & Mills, 2018; Hancock, Gaulton, & Danson, 2017). The main drawback 

of ground-based scanners however is the high occurrence of data occlusion (spatial structure of the 

data resulting in larger objects blocking those behind them), high equipment costs and the 

practicality of collecting data across larger scales (Donager et al., 2018; Heinzel & Huber, 2017; 

Newnham et al., 2015). 

Aerial remote sensing platforms include both manned and unmanned aerial systems. The main 

advantage of airborne over terrestrial systems is the ability to cover larger areas with a higher degree 

of repeatability. Manned systems such as planes are limited in comparison to unmanned systems 

due to the higher skills and costs required to operate, the inherent safety risks of aircraft operation 

and the fact that their use is mostly restricted to commercial operations (Manfreda et al., 2018). Due 

to the high-costs of manned systems, small scale studies and those of short revisit-times are typically 

unfeasible. 

Spaceborne sensors have been widely used for decades for larger-scale environmental monitoring. 

However, despite ongoing development in the capabilities and availability of satellite data, their 

application to monitoring of finer-scale ecological and environmental processes is still somewhat 

limited. While direct monitoring of broad vegetation types was possible, early community studies 

using satellite imagery were limited in their ability to detect low-density levels of vegetation cover 
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(Westman & Price, 1988) and phenological variation, even with hyperspectral imagery (Okin, 

Roberts, Murray, & Okin, 2001) The broad range of data types allow for multiple different 

applications in conservation and ecology; such examples include invasive species monitoring and 

modelling (Andrew & Ustin, 2009; Becker, Zmijewski, & Crail, 2013; Lantz & Wang, 2013; Young, 

Abbott, Caldwell, & Schrader, 2013), biophysical modelling of forest structure and resources 

(Czerepowicz et al., 2012; Dash, Pearse, & Watt, 2018) and ecosystem disturbance response (Karau, 

Sikkink, Keane, & Dillon, 2014; Pettorelli, Safi, & Turner, 2014; Pettorelli et al., 2005; Rastmanesh, 

Moore, Kharrati-Kopaei, & Behrouz, 2010; Skole & Tucker, 1993). One of the main advantage of 

satellite data is the existence of many decades worth of data which allows for long-term monitoring 

of environmental change (Corbane et al., 2015; Dornhofer & Oppelt, 2016; Karau et al., 2014; 

Pettorelli et al., 2014; Pettorelli et al., 2005; Platt, 2014; Reif & Theel, 2017; Shumack, Hesse, & 

Turner, 2017; Skole & Tucker, 1993). Xie, Sha, and Yu (2008) provide an excellent overview of the 

major satellite sensors and their applications in vegetation mapping up until the time of publication. 

1.1.1 Unmanned Aerial Systems  

Background 

Recent advances in unmanned aerial vehicles (UAVs) including miniaturisation, standardisation and 

cost-reduction have enabled the collection of data using small, remote-controlled aerial drones 

(Manfreda et al., 2018). As with any relatively new technology, there still exists some variation in 

the nomenclature surrounding UAVs. While “UAV” and “drone” are the more widely known names 

or acronyms, terms such as “Unmanned Arial Systems (UAS)” and “Remotely Piloted Aircraft Systems 

(RPAS)” are also widely used. In New Zealand, no single formal term has been defined by the Civil 

Aviation Authority (CAA), yet the term “Unmanned Aircraft” is used widely across CAA guidance 

material (CAA, 2018). “UAS” has been defined by the International Civil Aviation Organisation as the 

more up-to-date term rather than “UAV”, whereas “RPAS” are defined as “A set of configurable 

elements consisting of a remotely-piloted aircraft, its associated remote pilot station(s), the required 

command and control links and any other system elements as may be required, at any point during 

flight operation.” (ICAO, 2012). For the purpose of this study, the term UAS shall be used.  

Applications 

UAS have massive potential to reduce costs of collecting data as they incur fewer operational costs, 

including both technology and labour (Anderson & Gaston, 2013; Breckenridge, Dakins, Bunting, 

Harbour, & Lee, 2012; Dubayah & Drake, 2000; Kerr & Ostrovsky, 2003; Matese et al., 2015; Pajares, 

2015; Paneque-Galvez, McCall, Napoletano, Wich, & Koh, 2014). While highly suited to smaller 

studies, these advantages are lost for studies over 10-20 ha (Manfreda et al., 2018). Another strong 

advantage of UAS is that they are less susceptible to atmospheric effects due to their lower 



 4 

operational height, and are not restricted to certain hours of operation or availability, allowing for 

near-continuous data collection (Manfreda et al., 2018). 

UAS have been proven effective for environmental and ecological monitoring. Such applications 

include the detection and quantification of characteristic rangeland habitat features (Breckenridge 

et al., 2012; Breckenridge, Dakins, Bunting, Harbour, & White, 2011), mapping canopy-gap metrics 

relating to floristic biodiversity and forest disturbance and regeneration (Stephan Getzin, Nuske, & 

Wiegand, 2014; S. Getzin, Wiegand, & Schoning, 2012), post-restoration monitoring of at-risk 

habitats (Dufour et al., 2013; Knoth, Klein, Prinz, & Kleinebecker, 2013; Reif & Theel, 2017; Zahawi 

et al., 2015) wildfire risk modelling (Shin, Sankey, Moore, & Thode, 2018) and invasive species 

monitoring (Chabot, Dillon, Ahmed, & Shemrock, 2017; Chabot, Dillon, Shemrock, Weissflog, & 

Sager, 2018; Ouyang et al., 2013).  

The utility and ease of operation of UAS, as well as their low intrusiveness, make them particularly 

attractive in wildlife surveys (G. P. Jones, Pearlstine, & Percival, 2006; Koh & Wich, 2012; Watts et 

al., 2010). UAS have been used in direct monitoring of individual large grazing mammals (Guo et al., 

2018), elephants and orang-utans (Koh & Wich, 2012), alligators (Watts et al., 2010), as well as 

coastal bird species (Barr, Green, DeMaso, & Hardy, 2018; Dulava, Bean, & Richmond, 2015; Sarda-

Palomera et al., 2012). By combining population data and time-series imagery, indirect effects of 

herbivore movement and land management practices have also been studied (Mayr, Malss, Ofner, 

& Samimi, 2018; Morrison et al., 2018; D. Williams, Thorne, Sumba, Muruthi, & Gregory-Michelman, 

2018). By identifying plant species that are important for key wildlife species, UAS have been used 

in the indirect monitoring of available primate habitat (Alexander et al., 2018) 

Current Limitations 

Manfreda et al. (2018) provide an excellent summary of the current limitations surrounding the use 

of UAS for environmental monitoring. Their main conclusions surrounding limitations can be 

summarised as those based on UAS size, the relative lack of standardised data collection and 

processing skills and the restrictions placed upon their use via government legislation. Anderson and 

Gaston (2013), in an earlier review of UAS for spatial ecology, highlighted similar issues in drone size, 

operational skill and legislation. Duffy et al. (2018) provide a useful breakdown of the challenges 

faced in UAS operations based on the type of environmental setting in which they can occur.  

The limitation of operational range and reduction of cost-effectiveness for larger studies mean that 

traditional satellite and manned aerial surveys may be more feasible, but only when the high-

frequency of data collection via UAS is not considered (Manfreda et al., 2018). The limitations of 

operational range from small battery size were highlighted by Chen et al. (2018), and the restriction 
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of range via the distance limitations of radio operated control stations was emphasised by Goncalves 

and Henriques (2015). The small size of UAS, while enabling data collection below atmospheric 

conditions that affect other remote sensing systems, leaves them vulnerable to interference from 

local environmental conditions, such as wind, rain and temperature (Goncalves & Henriques, 2015; 

Suo, McGovern, & Gilmer, 2018). The small size also restricts the total payload of the drone itself, 

reducing the capacity to carry larger, more advanced sensors and equipment (Manfreda et al., 2018). 

Small payload capacity may limit operational efficacy, as an increase in spatial resolution is not as 

effective as an increase in spectral resolution (Komarek, Kloucek, & Prosek, 2018) The accuracy of 

the onboard GPS unit and its importance for data accuracy, as well as the issue of UAS payload was 

a significant barrier to their application for coastal management (B. Chen et al., 2018). The 

importance of payload in relation to UAS capability was also raised by Colomina and Molina (2014) 

in a review of UAS for remote sensing and photogrammetry.  

The fact that the relatively low costs involved in certain UAS studies make them available to a wide 

range of organisations contributes to the issue of a lack of standardised methodology and processing 

of data (Corbane et al., 2015). Manfreda et al. (2018) point out that with smaller studies and study 

sites comes a fragmentation of the adopted procedures and methodologies. In addition to this, a 

broad difference in budgets, skill sets and sensor technology contribute to the lack of unified 

principles and methods, translating to wide variations in recorded accuracies from differing 

techniques (Andrews, Gares, & Colby, 2002). The rapid access to high spatial and spectral datasets 

also creates high demand for data storage and processing capacity. Low-budget projects may not 

have access to adequate data processing power, reducing the effectiveness of their work. For 

satellite technology the data are often produced to a very high standard by a commercial operation; 

for UAS based studies, however, the final accuracy of the data is dependent on the skills and 

available processing power of the end user (Manfreda et al., 2018). Much of the existing and more 

well-known techniques available for data processing were developed for satellite and manned aerial 

remote sensing system, whose image pixels sizes were in the meters rather than centimetres 

(Candiago, Remondino, De Giglio, Dubbini, & Gattelli, 2015). Manfreda et al. (2018) state that there 

is a clear need for defined procedures in data processing due to the significant effect of error 

propagation from improper image mosaicking and data processing. 

1.2 Vegetation Classification 

1.2.1 Methods of Image Classification 

Image classification is the primary means by which landscape information can be extracted from 

remote sensing data (G. M. Foody, 2002; Marceau, Howarth, & Gratton, 1994; K. Wang et al., 2010; 
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Xie et al., 2008). The classification of vegetation and other land-cover types is a common application 

of remote sensing in ecological (Dymond & Johnson, 2002; Jeganathan, Dash, & Atkinson, 2014), 

conservation (Knoth et al., 2013; Ramıŕez-Garcıá, López-Blanco, & Ocaña, 1998) and wildlife 

management studies (Sarda-Palomera et al., 2012). When classifying vegetation characteristics using 

imagery there are a multitude of different methodologies and techniques available; choosing the 

right methods depends on the desired output.  

Conventional image analyses are based on pixel orientation classification approaches that rely only 

on simple spectral (multispectral) or visual Red Blue Green (VRBG) information contained in the pixel 

data (D. Jones, Pike, Thomas, & Murphy, 2011). Increasing the spatial resolution of imagery results 

in a greater power of detection of smaller image elements (Aplin, 2005; Mathieu et al., 2007), as at 

finer resolutions, the sub-pixel variation is reduced and the overall image accuracy is increased. This 

gain in individual pixel accuracy comes at the cost of increased variation between pixels (Mathieu et 

al., 2007), which has a detrimental effect of decreased spectral separability of the classes and a 

subsequent lowering of classification quality (Oloo, 2017; Underwood et al., 2007). Spectral overlap 

can also be a significant source of error when assessing small scale features, such as individual plant 

succession stages (Carvalho et al., 2013). 

Compared with pixel-based methods, object-based image analysis (OBIA) (also called geographic 

object image analysis GEOBIA) utilizes other image object features, such as size, shape and position 

in conjunction with spectral data (Benz, Hofmann, Willhauck, Lingenfelder, & Heynen, 2004; Lisita 

et al., 2013). The base units of OBIA are image objects which represent significant and typically 

homogenous groups of pixels in an image (G. Chen, Hay, Carvalho, & Wulder, 2012; P. Zhang, Lv, & 

Shi, 2013). These can be predefined by the user or derived automatically using algorithmic 

approaches. Remote sensing and OBIA show a strong utility for the analysis and quantification in 

invasion biology for both flora (D. Jones et al., 2011; Lantz & Wang, 2013; Smith et al., 2008) and 

fauna (Navratil & Wilps, 2013), as well as general vegetation and ground cover mapping (G. Chen et 

al., 2012; Yu et al., 2006) 

Classification algorithms can be either “supervised” or “unsupervised”, and the classification can 

either be on a pixel by pixel basis, or done as “image objects”. Supervised methods rely on data from 

a training dataset, which is typically built via the collection of “ground truth” data in the field, or 

manually built post-image collection of points and polygons that represent target class features (Lu 

& Weng, 2007). The aim of the training dataset is to create descriptive statistics for each class in the 

image, which are then used to derive class membership of a given pixel or image object. The quality 

and accuracy of the dataset used are of fundamental importance to classification outcome (Foody, 

Mathur, Sanchez-Hernandez, & Boyd, 2006). When the area in question shows high natural 
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complexity either in structure or land cover, creating a sufficiently representative training sample 

becomes inherently challenging (Lu & Weng, 2007). 

Unsupervised methods differ in that the pixel class is calculated using the statistical similarity of the 

spectral reflectance of each unit (Xie et al., 2008). The classes are then manually labelled using image 

interpretation skills. Due to the inherently complicated manner in which remote sensing data is 

collected, it is not uncommon for what exists as a single vegetation class or cover type to exhibit a 

wide range in spectral signatures in the remotely sensed images. Unsupervised methods are 

susceptible to within-class spectral variation, as well as spectral errors from image capture and 

processing (Xie et al., 2008). Supervised methods are more susceptible to user, rather than inherent, 

spectral error, as sampling methods can be designed to account for with-in class spectral variation 

(Foody et al., 2006). For a comprehensive review of classification types, see Lu and Weng (2007). 

1.2.2 Spectral and Spatial Resolution in Image Classification 

Very high spatial resolution (VHR) images are now becoming available for commercial use, as are 

hyperspectral sensors. Hyperspectral sensors split the electromagnetic spectrum into more discrete 

and more accurate spectral bands than multispectral sensors. Multispectral sensors can typically 

detect only four spectral bands: Red, Blue, Green and (typically, but not always) Near Infra-Red (NIR) 

(Underwood et al., 2007). Both VHR and hyperspectral imagery greatly enhance the capacity for 

ecologists to detect individual plant species signatures as well as signatures characteristic of certain 

plant communities (Andrew & Ustin, 2009; Turner et al., 2003; K. Wang et al., 2010; K. Wang, 

Franklin, Guo, He, & McDermid, 2009) However, while remote sensing has advanced to the point at 

which large individuals (usually trees, but see Koh and Wich (2012) and Sarda-Palomera et al. (2012)) 

can be identified with a good degree of accuracy, the application of remote sensing is currently 

limited in its ability to differentiate between individual species, such as herbs (Bradley & Fleishman, 

2008). 

Hyperspectral data has many benefits over multispectral data in terms of its power in vegetation 

classification. By increasing the complexity of the available data, more precise classification 

techniques can be applied. Recent applications have included increased accuracies in early detection 

and tracking of the extent of biological species invasions (Andrew & Ustin, 2009; Ouyang et al., 2013; 

Underwood et al., 2007; A. P. Williams & Hunt, 2002), analysis of chemical compositions (Carvalho 

et al., 2013) and discrimination of individual mangrove species in a diversely populated mangrove 

forest (Koedsin & Vaiphasa, 2013). Multispectral studies are still relevant, however, as the 

combination of multispectral data with advanced classification techniques, such as object-based 

image analysis (OBIA) (Laba et al., 2010) as well as careful timing in image acquisition, can yield good 

levels of classification accuracy (D. Jones et al., 2011; Muellerova, Pergl, & Pysek, 2013).  
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While identifying species at low densities using low-resolution imagery can be difficult, this process 

can be greatly enhanced if the species in question has distinct phenological states that significantly 

differ from those species in its surroundings (Andrew & Ustin, 2009; He et al., 2011; M. L. Lu, Huang, 

Chung, & Huang, 2013; Ustin & Gamon, 2010). Phenological changes in vegetation can create distinct 

spectral patterns that can be readily detected with remote sensing, particularly so with 

hyperspectral sensors (Ouyang et al., 2013). There are two general categories in phenological 

studies: Short-term studies that take advantage of the detectable phenological differences between 

species for species identification (Ouyang et al., 2013) and longer-term studies that focus on 

monitoring the temporal fluctuations a given regions vegetation phenology over time (Knox et al., 

2013; Muellerova et al., 2013). Detecting changes in phenology requires data with high temporal 

resolution (Knox et al., 2013), including both in terms of spectral and field data (Nagendra et al., 

2013). 

1.3 Community Analyses with Remote Sensing 

One main remote sensing application of particular interest to this study is that of plant community 

analyses via the classification of UAS derived imagery. Community ecology is the study of the 

organisation of ecological communities based on species and or environmental variables (Leibold et 

al., 2004). The classification of images derived via remote sensing allows for the delineation and 

identification of different ground cover types including individual plant and animal species.  The 

concept of scale in ecology heavily influences the application of different remote sensing techniques 

and methodologies. Coarse-scale factors such as broadly defined community composition and 

habitat modelling are relatively common applications for remote sensing, however, the direct 

detection of fine-scale ecological phenomena has only recently been feasible due to the limited 

availability of the advanced technology required (Klosterman et al., 2018).  

In a quasi-ecological-arms-race, the pursuit of higher spatial and spectral sensors for ecological 

monitoring, the use of UAS for community analyses is a rapidly growing field. Baena, Moat, Whaley, 

and Boyd (2017) used multispectral (RGB + Red-Edge), very-high-resolution UAS derived imagery and 

OBIA to identify and quantify keystone tree species across wide heterogeneous equatorial dry forest 

landscapes in Northern Peru. Zweig, Burgess, Percival, and Kitchens (2015) investigated the 

feasibility of UAS for mapping multi-species wetland communities using multi-scale, high-resolution, 

true-colour multiband (RGB) imagery. Klosterman et al. (2018) conducted forest species community 

analysis of species and non-species specific communities using high-resolution multiband (RGB) 

imagery to investigate the relationship between species assemblages and spatial variations in plant 

phenology.  
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While the benefits of UAS and very high-resolution data are clear, the suitability of its wide 

application to ecological studies remains uncertain. The issue of appropriate scale in remote sensing 

relates to the importance of proper experimental design. Just as the design of field-based 

observational studies need to relate to the ecological phenomena in focus (Eberhardt & Thomas, 

1991), so too does the type and degree of remote sensing technologies being applied. Zweig et al. 

(2015) state that “An important consideration when using this new data source is to let the scientific 

question define the data specifications and not let the technology define the scientific question”. In 

their recent study, the very high-resolution imagery acquired via UAS was too fine for the specific 

communities and their inherent spatial and spectral characteristics. The authors state that had the 

test of such imagery not been the focus of their study, the high costs involved would have yielded 

data with limited scientific value.  

1.4 Remote Sensing of Sand Dune Environments 

Remote sensing of coastal dune environments has been carried out for multiple decades. 

Hugenholtz, Levin, Barchyn, and Baddock (2012) provide a comprehensive review of the progression 

in the application of RS for analysis of sand dune environments over the past forty to fifty years. In 

the time since the review was published, the research continues to advance. The structural and 

spatial characteristics of dunes, such as size, shape, movement and extent of the dunes have been 

widely studied using satellite (Kaliraj, Chandrasekar, Ramachandran, Srinivas, & Saravanan, 2017), 

aerial (Brownett & Mills, 2017; Charbonneau, Wootton, Wnek, Langley, & Posner, 2017) and 

terrestrial (Conlin, Cohn, & Ruggiero, 2018; Corbi, Riquelme, Megias-Banos, & Abellan, 2018) remote 

sensing platforms. Structural data typically comes from the use of LiDAR, which historically was 

restricted to satellite and aerial platforms. LiDAR sensors deployed on UAS are becoming more 

common thanks to increased payloads and miniaturisation of sensor technologies.  

Structure From Motion (SFM) is an advanced technique of 3-dimensional monitoring and allows the 

creation of a three-dimensional “point-clouds” from overlapping imagery, using scene geometry as 

well as sensor position and orientation (Westoby, Brasington, Glasser, Hambrey, & Reynolds, 2012). 

SFM is of particular interest in UAS studies as it can be derived from relative simple imagery (Conlin 

et al., 2018), however, references to its application in coastal monitoring are limited (Goncalves & 

Henriques, 2015). Recent advances in SFM technology and methodologies have resulted in spatial 

accuracies and data densities that were once only available via LiDAR (Goncalves & Henriques, 2015). 

While SFM presents a valuable tool for monitoring coastal environments, Conlin et al. (2018) found 

UAS based SFM platforms only produced similar vertical positioning errors to traditional structural 

assessments on un-vegetated dune systems. SFM returns a point cloud of surface heights, which 

includes that of any vegetation present. To correct for this, the average height of the vegetation can 
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be measured and then subtracted from the surface models via classification and broad processing 

of vegetated areas. Conlin et al. (2018) found when using average vegetation heights however that 

the relatively simplistic approach negatively influenced the final accuracies when mapping diverse 

and heavily vegetated dune environments.  

Existing satellite and aerial imagery are often used in conjunction with UAS imagery to monitor 

environmental change over time. Albuquerque, Alves, Espinoza, Oliveira, and Simoes (2018) 

combined historic satellite imagery with current UAS data to investigate the changes to dune 

structure and shoreline position in response to extra-tropical cyclone activity. Baughman et al. 

(2018) investigated dune movement in Alaskan sub-Arctic sand dunes using existing satellite imagery 

and aerial LiDAR data. Brownett and Mills (2017) provide a meta-analysis of the combined use of 

aerial imagery, LiDAR and terrestrial remote sensing for monitoring multiple coastal sand dune 

habitats on the British coast.  

The use of UAS for the analysis of dune ecological communities is still relatively uncommon. 

Goncalves and Henriques (2015) used a lightweight “flying wing” UAS to collect multiband, high 

resolution (<5cm) imagery of coastal dunes in Portugal. The authors were able to map the physical 

and vegetation structure of the dunes using SFM photogrammetry with accuracies that were equal 

to or greater than that derived from manned aerial surveys. Suo et al. (2018) used a multi-rotor UAS 

to capture high resolution (2.5cm), multispectral (RGB + Red Edge + NIR) imagery of the Brittas-

Buckroney dune complex on the coast of Ireland. In this study, a combination of photogrammetry 

and image classification was used to map dune vegetation and ground cover. The accuracies of 

classifications based on different combinations of spectral bands were tested, with those containing 

NIR and Red Edge image bands performing better than those with just RGB. Bastos et al. (2018) 

classified dune environments to aid in the creation of photogrammetric surface models. Vegetation 

was separated from open ground and classified by height, which was then used to remove the 

vegetation height from the surface model, creating a digital terrain model. Using this technique they 

were able to create a DTM using UAS with similar accuracies to that of a DTM derived from ground-

based GPS methods. Suo et al. (2018) were able to accurately classify discrete beach zones from high 

resolution (10cm), multiband (RGB) imagery. The study compared four different types of image 

classification, finding similar accuracies for SVM, MLC and Random Forest, an ensemble learning 

method for supervised classifications. The authors were also able to show that for site-specific 

studies with frequent data capture events, training data from independent capture events can be 

used to generate acceptable classification accuracies. 
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1.5 The rationale for the study 

The Department of Conservation (DOC) has expressed interest in the application of aerial drone 

survey technologies for conservation efforts. In particular, they are interested in the potential for 

aerial drone survey data to provide such information as vegetation classifications, particularly for 

the monitoring of species both invasive and threatened; the detection of non-target species impacts 

from spraying operation, and the characterisation of species’ habitats within the dune system. Dune 

systems have been highlighted as being of good potential for the testing of this technology as they 

appear to exhibit simple topography with clear zonation in vegetation.  

Sand dune plant communities are defined as being ‘dominated by herbaceous plants and low shrubs 

occurring on recent, unstable dune sands’ (Newsome, 1987). Active dunes typically have low plant 

diversity in comparison to more stable dune systems and are dominated by species that are able to 

adapt to or tolerate the harsh environmental conditions found there (M. Hilton, Harvey, Hart, James, 

& Arbuckle, 2006). New Zealand’s sand dunes have been detrimentally affected by human activities, 

including agriculture, forestry and recreation, as well as the introduction of a number of invasive 

plant and animal species (M. Hilton et al., 2006; M. J. Hilton, 2006; Partridge, 1992; Pegman & 

Rapson, 2005).  

Invasive plant species pose a significant threat to dynamic landscapes that are negatively affected 

by intensive human modification (Millennium Ecosystem Assessment 2005). Such species not only 

seriously threaten current states of biodiversity and ecosystem functioning (Pysek & Richardson, 

2010), but also can lead to drastic long-term changes in the characteristics of key landscapes (Chytry 

et al., 2012). The exotic sand-stabilising marram grass (Ammophila arenaria (L.) Link) is a significant 

invasive species found at most of the remaining dune systems in New Zealand (Gadgil, 2002). The 

widespread intentional establishment of A. arenaria populations as a method of sand stabilisation 

began in the early 1900s and continued until around the passing of the 1991 Resource Management 

Act; the new Act brought about a change in thinking towards the preservation and restoration of the 

natural character of ecosystems (Gadgil, 2002). The ability of A. arenaria to displace native dune 

species and change the environmental characteristics of sand dune communities in New Zealand is 

well known (Dixon, Hilton, & Bannister, 2004; Hesp, 2002; M. Hilton et al., 2006; Norton, 1991; 

Wardle, 1991). Some native species, such as Spinifex secriceus (R. Br.), are more effective in 

stabilising fore-dunes than A. arenaria; however, A. arenaria effectively dominates the stabilisation 

of the rear-dunes due to a lack of a dominant ecologically equivalent native species (Esler, 1970). 

Tree Lupin (L. arboreus Sims) is another prominent invasive species present in many coastal 

environments. The intentional planting of Lupin has been conducted for much of the previous 

century to aid in the stabilisation and reclamation of dunes for agriculture and forestry due to the 
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n-fixing ability of the legume (Berg & Smithies, 1973; Dick, 1994; Gadgil & Ede, 1998). Lupin is a 

threat to natural coastal ecosystems because not only does it directly compete with most native 

dune species (Molloy, Partridge, & Thomas, 1991) but the fixation of nitrogen can significantly alter 

the surrounding environment (Pickart, 2004), facilitating weed invasions (Maron & Connors, 1996). 

1.5.1 Aims and objectives 

Aims 

The aim of this study is to assess the use of high resolution, multispectral imagery for monitoring 

coastal plant communities. Traditional field-based community analysis methods will be conducted 

to serve as a baseline for the GIS-derived community data to be compared against.  

Objectives 

1. Conduct plant community analysis surveys of the site to establish a standard ecological 

model of the sand dune plant communities. 

2. Using UAS based remote sensing, collect high spatial resolution, multispectral imagery at 

Kaitorete Spit. 

3. Using GIS, carry out image classification on the imagery with the aim of digitally recreating 

the field based datasets. 

4. Use ordination and clustering techniques to classify the different vegetation communities at 

Kaitorete Spit using both field and GIS data. 

5. Compare the results of the GIS analysis to that obtained from field data 

1.5.2 Thesis structure 

This thesis is structured as follows: 

Chapter 1 presents an overview of the use of remote sensing in ecology with specificity towards the 

use of UAS based ecological community analysis. 

Chapter 2 provides the general research design and the development and refinement of the 

methodologies used to extract biologically relevant community data from the UAS imagery. 

Chapter 3 presents the results of image processing and analysis as well as the comparison of the 

field community data to that derived via UAS and how variations in image resolution may affect 

these results.  
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Chapter 4 includes a discussion of main results of this study and further discusses their suitability 

and relevance for the particular ecological phenomena and their inherent monitoring requirements 

at Kaitorete Spit. 

Chapter 5 brings together the main conclusions of this study and provides recommendations for 

future studies and the continued ecological monitoring of Kaitorete Spit. 
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Chapter 2 

Methodology 

2.1 Site Description 

More accurately called a barrier beach complex (Soons, Shulmeister, & Holt, 1997), Kaitorete Spit 

(Kaitorete) is a depositional barrier bar of mixed sand and gravels, originating at Taumutu, near the 

mouth of the Rakaia River, and extending for approximately 28 km towards the volcanic cliffs at the 

edge of Banks Peninsula (Figure 1). The spit itself has existed for around 8,000 years, with the barrier 

arm having progressed over two millennia from the Taumutu end until finally reaching Banks 

Peninsula, subsequently forming a barrier beach and enclosing two fresh to brackish water lakes; Te 

Waihora/Lake Ellesmere and Wairewa/Lake Forsyth. (Soons et al., 1997). The width of the barrier 

complex ranges from 250 m at its westernmost point to up to 5 km at its widest. Dune heights are 3 

– 5 m on average, with the highest dune heights approaching 15 m (Johnson, 1992).  

The study site for Kaitorete Spit is restricted to a smaller area of the greater spit (Figure 2), 

encompassing the majority of the dunes within and surrounding the DOC Kaitorete Spit Science Area 

and Conservation Reserve. This legal classification allows for more effective habitat management 

and protection compared to Kaitorete Spit as a whole. The natural heritage and conservation values 

of Kaitorete Spit have been identified as being nationally significant (Davis, 2002; Lettink, 2008; 

Partridge, 1992; Patrick, 1994; Peace, 1975; Pudji, 1997). Kaitorete Spit is the largest unmodified 

dune system in the Canterbury region (Johnson, 1992). Characterised by the uninterrupted sand and 

gravel beach that runs for the entire length, the site is also home to distinct, active, fore and rear-

dune ecosystems (Davis, 2002; Hooson, 2015). Kaitorete is home to the largest dune population of 

the indigenous and at-risk sand-binding sedge, pīngao (Ficinia spiralis A. Rich (=Desmoschoenus 

spiralis) (golden sand sedge)) (Johnson, 1992; Partridge, 1992). Other notable plants at the site are 

the threatened and locally endemic species Carmichaelia appressa G. Simpson (prostrate broom), 

Muehlenbeckia astonii Petrie (shrubby tororaro, wiggywig, mingimingi) and Craspedia “Kaitorete”, a 

currently undescribed species endemic to Kaitorete Spit. The active fore-dune native vegetation is 

characterised pīngao, sand sedge (Carrex pumila Murray), shore bindweed (Calystegia soldanella (L.) 

R.Br. ex Roem. & Schult.) and sand tussock (Poa billardierei (Spreng.) St.-Yves).  

Within the bounds of the reserve pest species are actively controlled, creating an environment in 

which a more-natural coastal dune ecosystem can function. The dune vegetation is at risk from a 

number of introduced species, including marram grass, broom (Cytisus scoparius (L.) Link), gorse 

(Ulex europaeus L.) and tree lupin (L. arboreus Sims). Domestic stock and grazing pests, such as 

http://en.wikipedia.org/wiki/Carl_Linnaeus
http://en.wikipedia.org/wiki/Johann_Heinrich_Friedrich_Link
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European rabbits (Oryctolagus cuniculus (L., 1758)) and European hares (Lepus europaeus (Pallas, 

1778)), also threaten the dunes (DOC, unpublished report). Although a serious threat to the dune 

system, the local population of L. arboreus has, in the past, been naturally all but eradicated by the 

combined efforts of the root fungus Colletotrichum gloeosporioides (Penz) and the native Kowhai 

Moth (Uresiphita polygonalis maorialis (Felder & Rogenhofer))(Molloy et al., 1991). While anecdotal 

reports suggest that the fungus still periodically lowers L. arboreus population levels, the activity of 

the Kowhai Moth has not been studied. The moth has been associated with a few non-native species 

and its presence at Kaitorete may, in fact, rely on the populations of these exotics, as Peace (1975) 

noted a vast reduction in the natural range of its native host species, the Small-Leaved Kowhai 

(Sophora microphylla (Aiton)  

Kaitorete Spit has a long history of human activity. The site was used extensively by Maori in pre-

European times for food-gathering and was viewed as an important strategic location between rival 

Iwi (Holmes, 1998). Post-European arrival, much of the land has been and continues to be used for 

farming, including arable cropping and sheep and beef grazing. A small community called Birdling’s 

Flat sits at the eastern-most point of Kaitorete Spit. This community’s name comes from William 

Birdling who in around 1850 acquired 5000 acres of land and developed it for farming purposes 

(Peace, 1975). Extensive gravel and sand mining operations were carried out up until the ’90s, with 

a large sand pit being located in and around what is now the Kaitorete Scientific reserve. At this site 

alone, an estimated 274,384 m2 of material was removed over the length of its operation (Holmes, 

1998). Mining occurred across the entire dune system which resulted in the loss of rear, mid and 

fore-dunes in some areas. A study of the recovery of the vegetation post-mining was carried out in 

the nineties and showed that in many cases the mining has likely had irreversible effects on the 

vegetation of the site (Partridge, 1992).  

Kaitorete also has a history of military activity. Between 1950 and 1958, the RNZA used an area to 

the west of Birdling’s Flat for artillery practice. Towards the middle of the spit, an area near the 

junction of Baileys Road and what was then known as Habgood’s Quarry Road (the last turn-off to 

the beach as you head west on Bailey’s Rd, was used by the RNZAF as a practice bombing range 

between 1940 and 1958. The impact of this activity was reportedly limited to a few small craters and 

the occasional fire (Peace, 1975). As of 1997, the area was used for parachuting practice (Pudji, 

1997).  
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Figure 1. Location of the study site at Kaitorete Spit, in Canterbury, New Zealand. 

 

Figure 2. Study extent and location in relation to Banks Peninsula, Canterbury, New Zealand. 
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2.2 Data collection 

2.2.1 Vegetation Surveys 

Vegetation surveys were conducted late 2013 at Kaitorete Spit. Transects were established 

perpendicular to the high tide mark at every 300 m in additional distance from an established 

reference point inside the image boundary, with plots laid down every 10 m along the transect until 

reaching the inland maximal extent of the dune. Plots were 6 m x 6 m, divided into nine 2 m x 2 m 

quadrats. For the vegetation within each quadrat, the estimated per cent cover (to the nearest 5%) 

was recorded for each species of major vegetation class present. Differential GPS points were taken 

at the centre of each quadrat, with in-field accuracy of 0.5 m and a post-processing accuracy of 

approx. 0.05 m. 

2.2.2 Image Acquisition 

Multispectral imagery was captured on December 5th 2013 using an RQ-84Z Photogrammetry UAS 

by Hawkeye UAV (now Hawkeye Systems). The RQ-84Z featured dual mounted Sony NEX 5 (24 

megapixel) cameras enabling the concurrent acquisition of both NIR and RGB data. The data were 

collected flying at an average height of 190 m above sea level, no higher than 219 m above sea level. 

A timing of three seconds between each image was used, hence camera location is variable across 

the target area due to flight considerations (such as wind speed and direction).The positioning and 

orientation (POS) of the camera were determined by the on-board uBlox GPS. The imagery was 

delivered in the form of 21 image ‘tiles’ for both the RGB and NIR data (42 in total) with each tile 

covering approximately 1 km2. The NIR was split into two different datasets, based on the two 

independent capture events. The RGB was not divided into the same format for reasons unknown.  

2.3 GIS Analysis 

The overall aim of the GIS analysis conducted in this study was to recreate the field community data 

with UAS imagery using image classification and other GIS techniques and methodology. Section 

2.3.1 details the initial processing of the imagery. This work focused first on correcting the spatial 

and spectral discrepancies that existed in the raw image data. The data were then transformed and 

augmented through the creation of vegetation indices as varying measures of certain image 

properties. Those indices that contributed most to overall variation were selected and put forward 

for classification testing. In Section 2.3.2 a series of multiband images were classified using three 

different image classification techniques. The specific combinations of multiband images and 

classification algorithms were then ranked by the measure of classification accuracy. The image and 
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technique with the highest accuracy were then used as the basis for the community analyses for 

comparison against those of the field data.  

2.3.1 Image Preparation 

The images were pre-processed by Hawkeye UAV Ltd for sharpness and shadowing then processed 

in Areo (Version 3.01, © 2014 Areograph Ltd), a multi-ray photogrammetric software, to produce 

the orthographic imagery with a dependent terrain model and point cloud. Ground Control Points 

(GCPs) was used to adjust the data to the true ground, with 30 GCPs laid out at selected sites in the 

target area and surveyed. The data were delivered in LAS 1.2 format (Point Cloud), TIFF (photos), 

TIFF/TFW (orthophotos) and ESRI Shapefile (index and ground control points). All further GIS 

analyses and processing was carried out using ArcGIS 10.3 (ESRI, 2014).  

Significant spatial and spectral errors that were present in the raw imagery became apparent after 

the image products had been delivered for the project by Hawkeye UAV. Poor GCP positioning and 

density resulted in inconsistent spatial accuracy across the images, as well as issues with the 

coverage of the data, i.e., ‘holes’ in the imagery at various points. The NIR and RGB data, being 

captured with two independent sensors and processed in separate operations exhibited a non-

satisfactory overlap. The site being flown in two ‘halves’ (eastern and western ends) also introduced 

a major discrepancy in spectral quality.  

The primary aim of image processing was to create a GIS dataset comparable to that of the field data 

based on the captured imagery. In order to achieve this, multiple image processing steps were 

required in order to maximise the spatial and spectral accuracy of the GIS data. These were as 

follows: 

1. Collate the individual RGB and NIR image tile sets into two spatially continuous raster sets 

for processing. 

2. Correct the significant geospatial positioning errors in the raw imagery. 

3. Correct the significant geospatial discrepancies between the NIR and RGB data. 

4. Collate the individual image tiles into a single, multi-band image. 

Raster Creation 

Mosaicking and Colour Balancing 

Raster mosaicking is the process of joining together multiple raster images into a continuous dataset 

to enhance image processing speeds and to smooth out -image spectral variations. Using the 

“Mosaic” tool, the individual RGB and NIR image tile sets were joined together to form larger, 
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spatially continuous images. The raw NIR dataset was captured in two halves with some overlap 

between the two, therefore, these images were processed in two stages. To account for any overlap 

between input datasets, the mosaic operator “blend” was used, which creates a new value for 

overlapping areas based on a horizontally weighted calculation of the overlapping cells. “Mosaic 

colourmap” mode “last” was used to set the colourmap of the mosaicked raster to that of the last 

raster added. The “mosaicking tolerance” was set at 0, meaning that for any misalignment between 

the target and source pixels, the source pixels are resampled to create a new value based on the 

average of the two overlapping pixels. 

Georeferencing 

Further georeferencing was needed to maximise local spatial accuracy in the imagery. As the data 

had been collected via two independent sensors, there also existed significant spatial discrepancies 

between the two images. The RGB image was first georeferenced against the Ground Control Points 

(GCPs) that were manually collected in the field, based on hard reference points, e.g. fence posts, 

structures and feature boundaries. Once the RGB image was positioned in accordance with the 

existing GCPs, the NIR image was then georeferenced to the RGB image using a combination of the 

manually collected GCPs, as well as 275 additional GCPs that were selected using the 

“georeferencing toolbar”. Pairs of corresponding GCPs were identified that link the two images 

together, with the aim of shifting one raster to the correct position based on the associated point in 

the target raster. The accuracy of the transformation was calculated via the root square mean error 

(RMS), which is the difference from where the point in the raster to be transformed was specified 

to be on the reference raster, compared to where the point was located after the transformation 

took place. The sum of the RMS of all residual errors was used as a measure of transformation 

consistency. The forward residual showed the error based on the spatial reference system of the 

data, whereas the inverse residual showed the error in pixel units (1 pixel = 10 cm).  

Spline transformations were used to transform the images in all cases. Spline transformations are 

best suited to where high local accuracy is required over global accuracy. Pairs of control points are 

transformed to overlay exactly, while those areas that lay some distance away from control points 

are shifted for best accuracy. Because the accuracy of these areas cannot be guaranteed, it is 

important to create a large number of points with good coverage of the image. Exact precision is 

required for the placement of control points in order to achieve the greatest accuracy.  

When selecting reference points to use, physical points, such as fence-lines, corners of buildings, 

vertices in track intersections and other objects were given priority over living objects, e.g. plants, 

due to those objects characteristically having more defined borders, allowing higher confidence in 



 20 

locations across both RGB and NIR images. When no suitable physical objects were available, plants 

with highly contrasting features, such as hard object boundaries, were selected as reference points.   

Kernel-based filters to increase the accuracy of georeferencing  

Image Sharpening and edge detection were employed to aid in the detection of suitable control 

points for georeferencing the two image sets. Images were processed using a series of Convolution 

Functions (ESRI, 2014) which apply a moving kernel-based filter to the entire image, multiplying the 

cell values by that of the filter. These are used to improve the quality of an image raster by reducing 

the local spectral variation and enhance certain image object features such as boundaries (ESRI, 

2018a). A “smoothing” filter (Table A. 2) was first applied to reduce image noise, followed by a series 

of “sharpening” filters (Table A. 3, Table A. 4, Table A. 5 and Table A. 6) to enhance the definition of 

image object boundaries.  

 

Figure 3. Image sharpening of a sample of the typical dune vegetation at Kaitorete Spit. A = raw 
image, B = smoothing filter, C = smoothing and sharpening, D = Edge detection. 

Vegetation Indices 

Vegetation Indices (VIs) are simple and effective algorithms that are applied to remote sensing data 

in order to derive quantitative and qualitative assessments of vegetation characteristics, such as 

growth, vigour, structure and cover (Xue & Su, 2017). Most VIs incorporate the difference between 

the red and NIR spectral bands, as Red reflectance is sensitive to chlorophyll, and NIR is sensitive to 

the internal leaf structure (Candiago et al., 2015). The greater the difference between the two 
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reflectance’s, the greater the implied amount of living, or “green”, vegetation. Small differences can 

indicate non-living surfaces, such as open ground or dead plant matter (Xu, Guo, Li, Yang, & Yin, 

2014). 

Creation and evaluation 

Seven common VIs were chosen for comparison based on the four discrete bands in the base imagery 

(Table 1). The SR and NDVI are based on the reflectance of the NIR and RED areas of the spectrum 

and are used to enhance the differences between the living and non-living ground cover types. While 

being implemented in monitoring a wide range of ecosystem types, such as salt marshes (Gao & 

Zhang, 2006; Schalles, Hladik, Lynes, & Pennings, 2013; Sun, Fagherazzi, & Liu, 2018), mountain 

pastures (Zhumanova, Mönnig, Hergarten, Darr, & Wrage-Mönnig, 2018), dry grasslands (Magiera, 

Feilhauer, Otte, Waldhardt, & Simmering, 2013; Pearson & Miller, 1972; Weber, Schaepman-Strub, 

& Ecker, 2018) and sand dune communities (A. V. Bradley, Haughan, Al-Dughairi, & McLaren, 2019; 

Burgheimer et al., 2006; Shumack et al., 2017) they have been shown to be susceptible to the effect 

of soil brightness, and increasingly so in areas of sparse vegetation cover (Gilabert, González-

Piqueras, Garcıá-Haro, & Meliá, 2002; Nagler, Daughtry, & Goward, 2000; Rondeaux, Steven, & 

Baret, 1996; Xu et al., 2014). The addition of vegetation indices that focus on the green spectrum is 

due to the fact that for certain species, it is better associated with variations in leaf chlorophyll 

(Sripada, Heiniger, White, & Meijer, 2006), crop biomass (E. Hunt et al., 2011; Farrell, Gili, & 

Noellemeyer, 2018), anthocyanin content (Anatoly A. Gitelson, Keydan, & Merzlyak, 2006) and Leaf 

Area Index (F.-m. Wang, Huang, Tang, & Wang, 2007), as well as being less affected by soil and water 

reflectance (Motohka, Nasahara, Oguma, & Tsuchida, 2010). Ratios with normalised spectral bands 

have also been shown to reduce the negative effects of illumination and soil reflectance (Sripada et 

al., 2006). 

Table 1. Seven Vegetation Indices were assessed for their relevance in explaining the difference 
between image objects.  

Names of Vegetation Indices  Equation Reference 

Simple Ratio (SR), also known as the 

Ratio Vegetation Index (RVI) 

𝑁𝐼𝑅

𝑅𝑒𝑑
 (Pearson & Miller, 1972) 

Normalised Differential Vegetation 

Index (NDVI) 

𝑁𝐼𝑅 - Red 

NIR + Red
 

(Rouse Jr, Haas, Schell, & 

Deering, 1974) 
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Green Normalised Differential 

Vegetation Index (GNDVI) 

NIR - Green 

NIR + Green
 

(Anatoly A Gitelson, 

Kaufman, & Merzlyak, 1996) 

Green Red Vegetation Index (GRVI) 𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛
 

(Sripada et al., 2006) 

Normalised Green (NG) 𝐺𝑟𝑒𝑒𝑛

𝑁𝐼𝑅 +  𝑅𝑒𝑑 +  𝐺𝑟𝑒𝑒𝑛
 

(Sripada et al., 2006) 

Normalised Near Infra Red (NNIR) 𝑁𝐼𝑅

𝑁𝐼𝑅 +  𝑅𝑒𝑑 +  𝐺𝑟𝑒𝑒𝑛
 

(Sripada et al., 2006) 

Normalised Red (NR) 𝑅𝑒𝑑

𝑁𝐼𝑅 +  R𝑒𝑑 +  𝐺𝑟𝑒𝑒𝑛
 

(Sripada et al., 2006) 

PCA tests 

Many different ancillary variables, such as VI, may be used to increase the accuracies of image 

classification, however, care must be taken to select only those which are of most relevance for the 

separation of classes (Lu & Weng, 2007). The addition of too many variables has the potential to 

reduce overall accuracy (Price, Guo, & Stiles, 2002). Using Model Builder and Map Calculator, The 

four individual image bands of the composite image were combined to create a series of separate 

vegetation indices (Table 1). These layers were combined with the original 4 band image using 

Composite Bands to create an 11 band image layer. This was subjected to a PCA using Principal 

Components (Table 5).  

Composite Image Creation 

Following the results of the PCA, the SR and NDVI indices were isolated and combined with the 

original four band image using Raster Calculator to create a six-band image and as two separate 5 

band images (Table 2). The resulting three new multiband images, as well as the original, were then 

used as the basis for image classification.  

Table 2. List of multiband images for classification. 

Raster image Image bands 

K2_CompositeBands4 Red, Green, Blue, NIR. 
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K2_CompositeBands5_SR Red, Green, Blue, NIR, SR 

K2_CompositeBands5_NDVI Red, Green, Blue, NIR, NDVI 

K2_CompositeBands6 Red, Green, Blue, NIR, SR, NDVI 

  

2.3.2 Preliminary Image Analysis  

Image Classification 

Classification types 

Three different classification methods were tested on the four different multiband images (Table 2) 

using the Image Analysis extension for ArcGIS 10.3 (ESRI, 2014). This included two pixel-based 

methods, unsupervised Iso Cluster and supervised Maximum Likelihood Classification, and one 

object-based, supervised image analysis approach, Support Vector Machine. Each of the multiband 

images was first segmented using the Segment Mean Shift tool. The inputs ‘spectral detail’ and 

‘spatial detail’ were set to the maximum value, 20. A high ‘spectral detail’ allows for greater 

discrimination between image objects with similar spectral characteristics. A high ‘spatial detail’ is 

best suited for when the image objects of interest are small or and clustered together (ESRI, 2018b). 

Unsupervised classifications are one of the more traditional forms of image classification and are 

widely used for mapping thematic vegetation cover from remotely sensed image data (Xie et al., 

2008). the main advantages of unsupervised classifications, when compared to more advanced 

techniques, come from its relative ease in application, as well as being readily available in a range of 

statistical analysis and image processing programs and applications (Langley, Cheshire, & Humes, 

2001). MLC is a form of probabilistic classification, in which each pixel or image object is allocated a 

class with which it exhibits the highest probability of membership (Foody, 1996). Xie et al. (2008), 

state that MLC is one of the most commonly applied classification techniques for satellite imagery 

when using pixel or statistical-based distributions. Since MLC rely on the assumption of Gaussian 

distribution in the data, then classification results may be limited in areas of the highly complex 

cover of non-normal distribution (Otukei & Blaschke, 2010). SVM classifications use machine 

learning algorithms to find the optimal separation between classes based on training samples 

(Huang, Davis, & Townshend, 2002). An important factor of SVMs is that often only the training 

sample of best fit is used for the description and specification of a class (Mountrakis, Im, & Ogole, 

2011). SVMs have been shown to be effective with relatively small and/or incomplete training 
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datasets, achieving higher classification accuracies when compared to MLC classifications (G. M. 

Foody & Mathur, 2004; Mantero, Moser, & Serpico, 2005). With training datasets often being highly 

time-consuming, a reduction in the amount of training data required for accurate classifications can 

help reduce overall project costs (Foody et al., 2006). Mountrakis et al. (2011) state that the cross-

disciplinary application of SVMs can be challenging due to the inherent complexity of the more 

efficient and effective concepts in certain SVM variants.  

Classification method evaluation  

To aid in the evaluation and selection of the different image band combinations and classification 

types, the greater Kaitorete image set was divided into subsets of three smaller test sites. Each of 

the three sites was selected manually, based on spatial separation and differences in ground cover 

types. Each site was isolated using the Clip Raster tool with the same polygon used for each clip to 

ensure each new raster was near exact in spatial extent and cell count. Each site measured 

approximately 56,500 m2 for a total of 169,500 m2, or approximately 0.03% of the total 6 km2 area.  

For each of the test sites, training data sets for the supervised classifications were built using the 

composite images generated from the RGB and NIR band. The methodology for the selection of 

training data was based on the recommendations of (Foody et al., 2006). Representative pixels from 

the major ground cover classes were selected to generate a vector layer consisting of approximately 

150 pixels for each class. Once the training data set was complete, the Interactive Image 

Classification tool was used to produce small, on-the-fly maximum likelihood classifications. The 

dataset was further refined until the point where either further additions resulted in additional 

errors, or until the number of pixels within the class, sample reached between 100-150 pixels.  

Pixels were selected based on their positioning within an identified target plant. Those pixels located 

more to the centre of a plant, or those displaying the most saturation in true colouration, were given 

higher priority. Those pixels outside of these criteria had a higher chance of misrepresenting their 

class. Edge-pixels covered areas where there was a lower density of foliage, meaning that other plant 

material affected the pixel’s spectral signature. Centre pixels were also less likely to be affected by 

the geoprocessing errors between the NIR and RGB data in identified plants that were of greater size 

than the amount of local error.  

For each site, SR and NDVI were calculated and combined with the original four bands to create two 

five-band rasters and one six-band raster before image classification was implimented. These were 

converted into 8-bit data types from 32-bit, as required for classification. The four multiband images 

were then classified based on the training data using Maximum Likelihood Classifier, Support Vector 
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Machine and Iso Cluster Classifications, creating twelve classified images at each site for assessment 

(36 total).  

Accuracy Assessment 

Classification accuracies of the three sites were tested using both point and area-based methods. 

For point-based assessment, 100 pixels were selected for each of the dominant classes (Figure 4). 

Selection of pixels was based on the same strategies used in classification training. For area-based 

assessment, ten 56.6 m2 sample sites (approx. 1% of each site) were located using a random 

coordinate generator (Figure 5). Within the bounds of each sample, ground cover was manually 

classified using the polygon drawing tool until 100% coverage was achieved (Figure 6). Sample site 

size was restricted due to logistical constraints involved with sampling such high-resolution data over 

a large spatial extent.  

For point-based assessment, using ModelBuilder, the results of the image classification were 

combined with the point shapefile using the Extract Values to Points (Spatial Analyst) tool. For the 

area based assessment, the results of the classification were converted from raster to vector, and 

then combined with the assessment polygons using a Merge spatial join.
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Figure 4. Test Site A showing point locations of plant species for class accuracy assessment. 

 

Figure 5. Test Site A showing the locations for area based classification accuracy assessment. Within 
each circle, the various cover classes were manually classified.  
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Figure 6. Example of the manually classified assessment area. 

The results from the two assessment types were then used in the creation of 36 individual confusion 

matrices to establish the most accurate combination of spectral bands, vegetation indices and 

classification algorithms. From the confusion matrices, five different measures of classification 

accuracy can be determined; Total accuracy, Users accuracy, Producers accuracy, Commission error, 

Omission error and the Kappa Coefficient.  

Table 3. List of measures of accuracy used to asses image classifications. 

Accuracy 
Measure 

Equation Result 

Total 
AccuracyTotal =

Number of correct cells

Total number of cells
 

The average 
accuracy of the 
classification 
across all cover 
types. Does not 
account for error 
distribution across 
classes. 

Users 
accuracy 

Accuracy𝑈𝑠𝑒𝑟′𝑠 =
Number of correct cells in class X

Number of cells classified as class X
 

For each class, the 
probability that a 
randomly chosen 
point on the map 
has the same class 
value in the field.  

Producer’s 
accuracy 

AccuracyProducer′s

=
Number of correct cells in class X

Total number of cells meant to be in class X
 

For each class, the 
probability that a 
randomly chosen 
point in the field 
has the same value 
on the map  

Commission  Commission𝐸𝑟𝑟𝑜𝑟

=
Number of incorrect cells in class X

Total number of cells classified as class X
 

Measurement of 
how much the 
class has been 
over-classified,  

Omission  Omission𝐸𝑟𝑟𝑜𝑟

=
Number of cells in class X that were classified as Y

Total number of cells meant to be in Class X
 

Measurement of 
how much the 
class has been 
under-classified 

Kappa 
coefficient  

Kappa = (Total number of points ∗  sum of correct)
− sum of all the(classified points
∗ ground truth points )
/(Total number of points^2 )
−  sum of all the(classified points
∗ ground truth points ) 

Reflects the 
difference 
between the 
actual agreement 
and the agreement 
expected by 
chance.  
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2.3.3  Final classification and feature extraction 

Based on the results of the analyses in Section 2.3.2 the final classification was conducted on the 

multiband image which contained the NDVI as its fifth layer, using the SVM classification of the 

segmented image. For this classification, a new and independent classification training dataset was 

created. This was to have a training dataset that covered a greater amount of area across the entire 

site and to encompass certain classes that were not present in the test sites, such as Coarse Woody 

Debris. The final accuracy assessment was based on the same points and areas used in the 

assessment of the test sites. 

Vegetation Sampling Using GIS 

Original plant community quadrat GPS locations were identified and a digital polygon of the plot was 

created and rotated until each point lay within the bounds of its respective polygon. Further spatial 

joins were used to assign each polygon to its respective transect, plot and quadrat code based on 

the original GPS data. Due to the large spatial error introduced during data processing, the exact 

location of each quadrat could not be precisely established. A 10 m buffer around each plot was 

used to clip the classified image to create localised classification information for faster community 

analysis processing. To test for the effect of spatial resolution on community analysis, this new layer 

was resampled at 0.3 m, 0.5 m and 1 m resolution, and the four different spatial resolution layers 

were converted from raster to vector polygons. These polygons were then joined to the existing 

quadrat layer, and the respective attribute tables were exported to .csv format for comparative 

analysis. Figure 7 shows a step-by-step example of the digitisation process.  
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Figure 7. Feature extraction for comparison analysis. A = GPS location of the field quadrats, showing 
significant spatial error. B = plots were digitally created and manually manipulated to 
best fit. C= A buffer surrounding the plot was used to clip the classified layer. D = the 
buffer layer was converted to vector format, and then joined to the plot layer.   

2.4 Statistical analysis 

All of the following analyses were carried out using R version 3.5.1(R Core Team, 2018). 

The plant community data from both the field and GIS data were reshaped into a community 

abundance matrix by converting percent cover to relative abundance. At this point, all abundance 

data were at the spatial resolution of the quadrats (2 m x 2 m). As per the field sampling, each plot 

was made of nine quadrats. For every plot, the relative abundance of the cover class was calculated 

as the average values from each of its nine quadrats. The community abundance data were then 

processed at both the quadrat (2 m x 2 m) and plot (6 x 6 m) levels with 576 and 64 units, respectively 

(Table 4).  

Table 4. Community data were analysed at the quadrat and plot levels, with 4 GIS community 
datasets (1 for each resolution of the data) being compared against 1 field community 
dataset at both quadrat and plot levels. Observations = the number of sites in each 
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dataset. Number of ground cover classes = total different classes used in the community 
analysis. Variation in the number of classes was due to resampling methodology.  

Dataset Description Observations Number of ground 
cover classes 

Veg Raw field data at the quadrat (2 m x 2 m) 576 29 

Veg2 Raw field data at the Plot (6 m x 6 m) 64 26 

Gdat GIS-derived community data sampled at 0.3 
m at the quadrat (2 m x 2 m) level 

576 12 

gdatII GIS-derived community data sampled at 0.3 
m at the plot (6 m x 6 m) level 

64 12 

Gdat2 GIS-derived community data sampled at 0.5 
m at the quadrat (2 m x 2 m) level 

576 11 

Gdat2II GIS-derived community data sampled at 0.5 
m at the plot (6 m x 6 m) level 

64 11 

Gdat3 GIS-derived community data sampled at 1 m 
at the quadrat (2 m x 2 m) level 

576 12 

Gdat3II GIS-derived community data sampled at 1 m 
at the plot (6 m x 6 m) level 

64 12 

Gdat4 GIS-derived community data sampled at 0.1 
m at the quadrat (2 m x 2 m) level 

576 12 

Gdat4II GIS-derived community data sampled at 0.1 
m at the plot (6 m x 6 m) level 

64 12 

2.4.1 Clustering and Ordinations 

Modified TWINSPAN 

To compare the compositions of the plant communities of Kaitorete Spit, for both the field data, and 

the GIS data at each of the four spatial resolutions, Modified Two-way Indicator Species Analysis 

(TWINSPAN(M. Hill, 1979)) was carried out using the twinspanR R package (Zeleny, Smilauer, 

Hennekens, & Hill, 2016). TWINSPAN is a hierarchical divisive classification technique that is widely 

used in community ecology (Rolecek, Tichy, Zeleny, & Chytry, 2009). The algorithm places all sites 

along the first axis of correspondence analysis, then iteratively divides the sites into two using a 

discriminant function based on a particular species association towards one half or the other(M. O. 

Hill, Bunce, & Shaw, 1975). Modified TWINSPAN builds upon the original algorithm by adding an 

additional analysis of cluster heterogeneity prior to each division (Rolecek et al., 2009). TWINSPAN 

uses the concept of pseudospecies to quantifiably model the qualitative concept of differential 

species (i.e. species with distinct niche preferences). For each species, its range of relative 

abundances (as %) is split into a pre-defined set of dummy variables which are decided by users 

(Legendre & Legendre, 2012b).  
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TWINSPAN pseudospecies cut levels were adjusted to 0, 1, 25, 50 and 75 (based on % cover) and the 

minimum group size was set to 50 and 5 for the quadrat and plot levels, respectively. Maximum 

cluster number was set at three based on the results of cluster validation from the package clValid 

(Brock, Pihur, Datta, & Datta, 2008). TWINSPAN was not supported by clValid, so a similar divisive 

clustering algorithm (Diana) was used in its place. The number of clusters used for each TWINSPAN 

algorithm was determined for each dataset based on the Objective Function Score from the package 

RankAggreg (Pihur, Datta, & Datta, 2018). Values were calculated based on the results of clValid, 

which allows for iterative validation of different cluster amounts for a given clustering algorithm 

based on a series of validation measures from the R package “clValid”.  

nMDS Ordinations 

Using the R package labdsv (Roberts, 2016), a dissimilarity index based on the Bray-Curtis distance 

for each of the 10 datasets was calculated. In dissimilarity measures, a value of 1 between a set of 

objects indicates complete dissimilarity, while a value of 0 indicates an exact match of all descriptors 

(Legendre & Legendre, 2012a) An asymmetric dissimilarity measure was used, as is typical with 

species abundances, due to there being a high chance of “double-zero” occurrences (Ricotta & 

Podani, 2017). The absence of a given species from a site was likely due to a number of reasons, e.g., 

competitive exclusion from invasives, herbivore damage or the nature of a high-disturbance 

environment, such as an exposed dune system like Kaitorete Spit. In addition with some species or 

habitat types being confined to small, distinct areas (pers obs), the higher rates of local rarity would 

likely further increase the number of double zeros in the species matrix. Therefore, the absence of 

a species from a pair of sites cannot be used as a measure of similarity with any confidence due to 

the complexity of the n-dimensional niche of a given species (Borcard, Gillet, & Legendre, 2018). 

Nonmetric multidimensional scaling (nMDS) was used to visualise the clusters using the R package 

“vegan” (Jari Oksanen et al., 2018). For the nMDS, the Bray-Curtis dissimilarity index was used with 

three dimensions and 200 random starts. The nMDS was used as it has several advantages: first it is 

capable of utilising a non-Euclidean distance matrix, such as the Bray-Curtis, second data are not 

assumed to be of normal distribution, last, there is no assumption of a linear relationship between 

the variables and any underlying gradients (legendre & legendre, 2012c). Non-symmetric Procrustes 

rotations were used to test the ordination similarity between the field and GIS data at both the 

quadrat and plot level. 

Comparison of ordination and clustering results was done via superimposing the TWINSPAN groups 

onto the ordination diagrams. Comparison of the GIS data to the field community data was done 

using Procrustes Rotation from the R package “vegan”  
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Indicator Species Analysis 

Indicator species analysis was carried out using the R package “labdsv”. This package uses the 

function “indval’, which is based on the original equations of (Dufrêne & Legendre, 1997), but with 

minor changes (Roberts, 2016). The identification of species that indicate or characterise a given 

habitat or community is a core concept in ecology and biogeography. The strength of an indicator 

species comes from the degree to which it represents a single group of typology and the relative 

abundance of that species within the sites of a given group.  

This duality represents the specificity and fidelity of a species within its environment (Legendre & 

Legendre, 2012b). The simplified calculation of the Indicator Value for a given species is as follows. 

For each species j in each cluster of sites k, the specificity (𝐴𝑘𝑗) as a measure of abundance and the 

fidelity (𝐵𝑘𝑗) as a measure of presence are calculated as: 

Where the specificity is defined as: 

𝐴𝑘𝑗 = 𝑁𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠𝑘𝑗/𝑁𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠+𝑘 

And fidelity is defined as: 

𝐵𝑘𝑗 = 𝑁𝑠𝑖𝑡𝑒𝑠𝑘𝑗/𝑁𝑠𝑖𝑡𝑒𝑠𝑘+ 

Therefore: 

𝐼𝑁𝐷𝑉𝐴𝐿𝑘𝑗 = 𝐴𝑘𝑗𝐵𝑘𝑗 
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Chapter 3 

Results 

3.1 Image Analysis and Preparation 

3.1.1 Georeferencing 

Two-hundred and seventy five independent ‘control points’ were manually selected for use in the 

first transformation (Table A. 1). The total RMS error was Forward: 0.244306 and Forward-Inverse: 

0.0337121, where “Forward” is the error in NZTM units (m) and “Forward-Inverse” is the error in 

Pixels (=0.33cm). 

3.1.2 Vegetation indices 

Principle components analyses of the 11 band composite image show that over 99% of the total 

variation in the spectral data is explained by the four original image bands (Table 5) Of the additional 

vegetation indices, only three accounted for any variability, which were the SR (0.16%), the NDVI 

(0.01%) and the GNDVI (0.0007%). 

Table 5. Principle component results for the composite image band combining seven vegetation 
indices and the original four spectral image bands. Values are rounding to the nearest 2 
decimal places.  

Layer Eigenvalue Percent of Eigenvalues Accumulative of Eigenvalues 

1 Red 1482.66 80.78% 80.78% 

2 Green 314.89 17.16% 97.94% 

3 Blue 25.29 1.38% 99.32% 

4 Near Infra-red 9.33 0.51% 99.82% 

5 Simple Ratio (SR) 2.96 0.16% 99.98% 

6 
Normalised Differential 

Vegetation Index (NDVI) 0.27 
0.01% 100% 

7 

Green Normalised 
Differential Vegetation 

Index (GNDVI) 0.01 

0.00% 100% 

8 
Green Red Vegetation 

Index (GRVI) 0.00 
0.00% 100% 

9 Normalised Green (NG) 0.00 0.00% 100% 

10 
Normalised Near Infra-

Red (NNIR) 0.00 
0.00% 100% 

11 Normalised Red (NR) 0.00 0.00% 100% 
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3.1.3 Composite Band Creation 

Table 6. Spectral signatures of each of the four original spectral bands and the 2 Vis for the complete 
Kaitorete Spit imagery.  

Site Band Name Minimum Maximum Mean Standard Deviation 

Kaitorete Spit Red 0 255 10.41374 21.12342 

Green 0 255 10.03769 20.34674 

Blue 0 255 9.475183 19.40558 

NIR 0 255 13.03982 37.92536 

SR 0 255 2.778049 2.636996 

NDVI 0 200 16.09553 45.71262 

3.1.4 Image Classification Testing 

Test Site Isolation 

Table 7. Spectral signatures of each of the 4 original spectral bands and the 2 Vis across the three 
test sites at Kaitorete Spit  

Site Band Name Minimum Maximum Mean Standard Deviation 

Site 1 Red 4 150 47.62735 11.25186 

Green 7 142 44.89552 10.41671 

Blue 3 140 39.74252 12.57852 

NIR 0 255 127.3079 37.52974 

SR 0 41 2.39892 1.379468 

NDVI 0 197 150.0206 19.25598 

Site 2 Red 0 198 46.72451 10.50411 

Green 0 203 44.65184 11.0324 

Blue 0 195 41.86554 12.65605 

NIR 57 204 100.0896 16.59335 

SR 63 200 140.881 17.26446 

NDVI 0 165 1.805768 1.114341 

Site 3 Red 0 222 52.55609 9.579553 

Green 0 222 51.26546 9.959787 

Blue 0 217 49.2131 11.32494 

NIR 49 205 89.20518 15.15717 

SR 59 200 128.6543 15.98858 

NDVI 0 153 1.339265 0.998395 

 

Classification Results and Accuracy Assesment 

Classification accuracy was measured by both point and area-based methods for each of the three 

test sites Figure 8. Classification test results at Site 1. A= True colour image, B = 4bMLC, C = 4bISO 

and D = 4bSVM. 

Table 8, four image band combinations Table 9 and three classification algorithms Table 10. See 

Table A. 9 for the complete accuracy results. Figure 8 shows an example of the difference in 
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classifications for a four-band image at Test Site 1. The complete results of the classification tests 

can be found in the Geodatabase supplied in the digital appendices. The five-band image, containing 

the four original bands (R, G, B and NIR) combined with the NDVI layer was the most accurate 

classification as measured by Kappa Coefficient and Total Accuracy (Table 9). Support Vector 

Machine was the highest performing classification algorithm based on the Kappa Coefficient (62.3%), 

whereas the Maximum Likelihood Classification achieved the highest average Total Accuracy (71.1%) 

(Table 10).  

 

Figure 8. Classification test results at Site 1. A= True colour image, B = 4bMLC, C = 4bISO and D = 
4bSVM. 

Table 8. Combined accuracy of each test site across all classification methods 

 Average accuracy per test site Average accuracy across test sites 

Accuracy Measure Site 1 Site 2 Site 3  

Kappa 46.7% 44.3% 56.7% 49% 

Overall  52.9% 52.1% 62.8% 56% 

Table 9. Combined accuracy measures for each of the image band combinations 

Image Band Combination Average Kappa Coefficient  Average Total Accuracy 

RGBNIR+SR 49.26% 56.31% 

RGBNIR+ NDVI 51.12% 58.04% 

RGBNIR+SR+NDVI 47.34% 54.11% 
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RGBNIR 49.27% 55.30% 

Table 10 Combined average Kappa Coefficient and Total Accuracy scores for each classification 
method applied to the three test sites and four image band combinations.  

Classification Average Kappa Coefficient  Average Total Accuracy 

Support Vector Machine 62.3% 68.4% 

Maximum Likelihood 
Classification 61.1% 71.1% 

Unsupervised Iso Cluster 24.4% 28.4% 

3.2 Final Classification 

3.2.1 Classification Inputs 

The five-band composite image which performed the best in testing, RGBNIR+SR, was selected for 

final processing, to which the Support Vector Machine classification was applied. The SVM was 

chosen due to its higher Kappa Coefficient, which is a better measure of accuracy. A new training 

sample was created, independent of those used for the classification testing. The spectral signatures 

of each of the twelve cover classes for the final classification can be found in Table 11. 

Table 11. Mean reflectance values for final classification training sample 

 Band     

Ground Cover Class Red Green  Blue NIR NDVI 

L.arboreus  47.6 48.01538 24.21538 180.7846 175.8154 

M.complexa 24.40909 26.66667 17.07576 143.8939 178.5606 

P. radiata 5.72308 11.36923 6.96923 148.1539 190.6923 

Dead P. radiata 39.5082 43.21311 48.47541 95.40984 130.541 

F. spiralis 30.18333 21.55 12.7 158.9833 187.1 

Dead F. spiralis 37.35484 35.5 41.06452 88.45161 136.5323 

Bare Open Ground 62.33846 63.8 64.63077 81.41538 110.2308 

Grasses 47.72549 44.78431 39.90196 91.47059 109.1765 

C. appressa 45.80328 44.52459 23.16393 162.0328 174.9016 

R. australis 111.082 113.082 106.1312 120.3443 105 

P. esculentum 25.26984 28.96825 18.11111 182.9524 181.2222 

Coarse Woody Debris 125.4194 121.8387 120.8871 69.43548 72.79032 

3.2.2 Final Classification Accuracy Results 

Twelve different image ground cover classes were identified via SVM classification. Figure 9 shows 

an example of the results of the final classification for the full site. The fully classified layer is 

available in the Geodatabase supplied in the digital appendices. Table 12 shows the final number of 

pixels and area in m2 for the different classes. Point-based accuracy measures found the highest 

Kappa (69.73%) and overall/total (72.48%) accuracies, whereas area based accuracy was significantly 

lower (35.61% and 49.30% for the Kappa Coefficient and Overall/Total Accuracy, respectively). For 
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the full error matrixes of the accuracy assessments, see Table A. 7 and Table A. 8 for the point and 

area measures, respectively. 

Table 12. Total pixels and amount of area of each of the classified image classes for the five band 
composite image of Kaitorete Spit. 

Ground Cover Class Pixel Count Area in M2 

L. arboreus  587146 58.71 

M. complexa 21794319 2179.43 

P. radiata 1097459 109.75 

Dead P. radiata 17587201 1758.72 

F. spiralis 10110536 1011.05 

Dead F. spiralis 31188204 3118.82 

Bare Open Ground 110898664 11089.87 

Grasses 411546748 41154.67 

C. appressa 3272928 327.29 

R. australis 2746893 274.69 

P. esculentum 4403378 440.34 

Coarse Woody Debris 4766524 476.65 

Table 13 Class specific classification accuracies from the point based accuracy measures. Commission 
error = rate at which pixels were wrongly classified as this class (over-classified). 
Omission = number of pixels in class that were wrongly classified as another class 
(under-classified). Producers = how accurate the map maker was in determining this 
class. Users = how accurate the map itself is for a given class. 

Class Comission Omission Users Accuracy  Producers Accuracy 

L. arboreus  100.51% 30.33% 34.67% 53.33% 

M. complexa 11.11% 55.67% 82.33% 59.66% 

P. radiata 43.78% 4.00% 68.33% 94.47% 

Dead P. radiata 13.57% 28.33% 84.67% 74.93% 

F. spiralis 1.57% 7.67% 98.33% 92.77% 

Dead F. spiralis 41.31% 22.00% 64.33% 74.52% 

Bare Open Ground 26.00% 48.33% 74.00% 74.00% 

Grasses 7.82% 51.67% 89.00% 63.27% 

C. appressa 24.38% 32.67% 74.00% 69.38% 

R. australis 55.84% 2.33% 63.33% 96.45% 

P. esculentum 33.54% 42.00% 64.33% 60.50% 

Average 32.68% 29.55% 72.48% 73.93% 

Max 100.51% 55.67% 98.33% 96.45% 

Min 1.57% 2.33% 34.67% 53.33% 
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Figure 9 Final SVM classification results of the NDVI multiband image. 
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Table 14 Class specific classification accuracies from the area based accuracy measures. Commission 
error = rate at which pixels were wrongly classified as this class (over-classified). 
Omission = number of pixels in class that were wrongly classified as another class 
(under-classified). Producers = how accurate the map maker was in determining this 
class. Users = how accurate the map itself is for a given class. 

Class Comission Omission Producers Accuracy  Users Accuracy 

L. arboreus  92.21% 1.47% 98.53% 7.79% 

M. complexa 36.16% 55.26% 44.74% 63.84% 

P. radiata 68.30% 31.54% 68.46% 31.70% 

Dead P. radiata 85.25% 85.21% 14.79% 14.75% 

F. spiralis 84.11% 58.02% 41.98% 15.89% 

Dead F. spiralis 76.34% 83.99% 16.01% 23.66% 

Bare Open Ground 37.55% 11.44% 76.34% 62.45% 

Grasses 26.38% 57.02% 42.98% 73.62% 

C. appressa 80.38% 79.73% 20.27% 19.62% 

R. australis 74.76% 48.89% 51.11% 25.24% 

P. esculentum 95.78% 98.29% 1.71% 4.22% 

Average 68.84% 55.53% 43.36% 31.16% 

Maximum 95.78% 98.29% 98.53% 73.62% 

Minimum 26.38% 1.47% 1.71% 4.22% 

3.3 Community Analyses  

3.3.1 Species presence 

Field Data 

Twenty-five distinct ground cover classes were found across 64 plots at Kaitorete Spit. These were 

divided into living and non-living classes, with 14 living cover classes, of which 10 were identified to 

the species level, and 11 non-living classes, of which eight were identified to the species level, two 

were non-identifiable standing dead matter or coarse woody debris (driftwood) and one was bare 

open ground. 

Table 15. List of ground cover classes as found during field observations. 

Ground cover type Ground Cover Class 

Identifiable Species C. appressa 
F. spiralis 
L. arboreus  
Lycium ferocissimum (Miers) 
Melicytus alpinus (Forster & Forster) 
M. complexa 
Pimelea prostrata 
P. cita 
P. esculentum 
R. australis 

Mixed species cover Bryophytes 
Forbs 



 40 

Grasses 
Lichens 

Non-living identifiable species  dead C. appressa 
dead F. spiralis 
dead L. arboreus 
dead L. ferocissimum 
dead M. complexa 
dead P. cita 
dead P. esculentum 
dead R. australis 

Other ground cover type Bare Open Ground (OG) 
Dead Standing Biomass  
Coarse Woody Debris 

GIS Data 

12 distinct ground cover classes were identified as part of the GIS classification training across 64 

plots at Kaitorete Spit (Table 16). These can be divided into living and non-living classes, with eight 

living cover classes of which seven were identified to the species level, and four non-living classes, 

of which two were identified to the species level, one was bare open ground and one was coarse 

woody debris (CWD). All cover species were present at all sample locations, except for F. spiralis 

which, due to resampling conditions, was not detected at 0.5 m resolution.  

Table 16. List of Final cover classes 

Ground cover type Ground Cover Class 

Identifiable Species C. appressa 
F. spiralis 
L. arboreus 
M. complexa 
P. esculentum 
R. australis 
P. radiata 

Mixed species cover Grasses and Forbs 

Non-living identifiable species  dead F. spiralis 
dead P. radiata 

Other ground cover type Bare Open Ground (OG) 
CWD 

3.3.2 Field Based Plant Community Analysis 

Ordination 

mNDS Ordination was carried out on the field data at the quadrat and plot levels using a Bray\Curtis 

dissimilarity index (Figure 10). The number of axes were set at three, at which point the ordination 

stress vs. dimensionality approaches 0.1 (Table 17). Clarke (1993) proposes that for acceptable stress 

values: <0.05 = excellent fit, <0.10 = good fit, <0.20 = ok fit, >0.20 = poor fit. Final ordination stress 

was 0.1106805 (Quadrat) and 0.09520376 (Plot), indicating an acceptable ordination fit for both.  
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Figure 10. nMDS Ordination and Shepard’s diagram of the Field data at the Quadrat and Plot levels. 
The nonmetric fit is based on stress (S) and defined as R2 = 1-S*S, whereas linear fit is 
the squared correlation between ordination distances and dissimilarities. 

Table 17. nMDS ordination dimensionality and stress from the Field data at the quadrat and plot 
levels. 

Number of Axes Stress 

 Veg quad Veg plot 

1 0.288 0.266 

2 0.161 0.140 

3 0.111 0.095 

4 0.086 0.070 

5 0.072 0.056 

6 0.060 0.048 

TWINSPAN Divisive Clustering 

Modified TWINSPAN was used to divide the field data into 3 distinct clusters for the field data for 

both the quadrat and plot levels. The number of clusters (divisions) was set by the R package 

RankAggreg with Objective Function Scores of 4.67 and 5.49 for the quadrat and plot data levels, 

respectively (Table 18). Figure 11 shows the clustering results overlaid upon the nMDS ordination of 

the quadrat and plot level data.  
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Table 18. Optimal number of TWINSPAN clusters (divisions) and Objective Function Score for field 
data at the quadrat and plot levels at determined via… 

Dataset Number of clusters Objective Function Score 

Veg Quad 3 4.667622 

Veg Plot 3 5.484706 

 

Figure 11. Comparison of ordination results from nMDS of the field data at the quadrat and plot 
levels with clustering results from Modified TWINSPAN overlaid as bounding polygons. 

Indicator Species Analysis 

Indicator species analyses of the TWINSPAN results found that different species were indicative of 

each community type at both the quadrat (Table 19) and plot (Table 20) levels. For both datasets, 

the number of clusters with significant indicators (3) matched the total number of classes from the 

modified TWINSPAN analysis (3). Sixteen significant indicators were identified at the quadrat level, 

with 5, 8 and 3 significant indicators for each of the three classes, respectively. For the plot level 

data, ten significant indicators were identified, with 3, 4 and 3 for each of the three classes, 

respectively.  

Table 19. Indicator species analysis of the Modified TWINSPAN clustering results for the quadrat 
level field data. Sum of probabilities = 5.607. Sum of Indicator Values = 8.65. Sum of 
Significant Indicator Values = 8.37. 

Cluster Ground Cover Class Indicator value Probability 

1 Bare Open Ground 0.8783 0.001 

Dead F. spiralis 0.6674 0.001 
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F. spiralis 0.5367 0.001 

Coarse Woody Debris 0.3358 0.009 

A. arenaria 0.0521 0.04 

2 Forbs 0.7097 0.001 

Grasses 0.5881 0.001 

Bryophytes 0.5874 0.001 

Lichens 0.3887 0.009 

P. cita 0.315 0.001 

C. appressa 0.2966 0.001 

M. complexa 0.2353 0.002 

R. australis 0.1899 0.016 

3 Dead P. esculentum 0.9349 0.001 

P. esculentum 0.9183 0.001 

Dead Standing Biomass 0.7402 0.001 

Table 20. Indicator species analysis of the Modified TWINSPAN clustering results for the quadrat 
level field data. Sum of probabilities = 6.419. Sum of Indicator Values = 10.23. Sum of 
Significant Indicator Values = 7.1. 

Cluster Ground Cover Class Indicator value Probability 

1 
 
 

Dead F. spiralis 0.7707 0.001 

F. spiralis 0.7296 0.001 

Bare Open Ground 0.726 0.001 

2 
 
 
 

P. cita 0.6963 0.001 

C. appressa 0.6939 0.001 

Grasses 0.5236 0.038 

R. australis 0.4222 0.022 

3 Dead P. esculentum 0.9923 0.001 

P. esculentum 0.8627 0.001 

Dead Standing Biomass 0.6855 0.001 

3.3.3 GIS 0.1 m Resolution Based Plant Community Analysis  

Ordination  

nMDS Ordination to test for relationships between sites and species was carried out on the GIS 0.1 

m data at the quadrat and plot levels using a Bray\Curtis dissimilarity index (Figure 12). The number 

of axes were set at three, at which point the ordination stress vs. dimensionality approaches 0.05 

and the reduction of stress from additional dimensionality is low (Table 21). Final ordination stress 

was 0.06814165 (Quadrat) and 0.05825607 (Plot), indicating a good and excellent fit for the quadrat 

and plot level GIS 0.1 m data, respectively (Clarke, 1993). 
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Figure 12. nMDS Ordination and Shepard’s diagram of the GIS 0.1 m data at the Quadrat and Plot 
levels. The nonmetric fit is based on stress (S) and defined as R2 = 1-S*S, whereas linear 
fit is the squared correlation between ordination distances and dissimilarities. 

Table 21 Optimal number of TWINSPAN clusters (divisions) and Objective Function Score for GIS 0.1 
m data at the quadrat and plot levels.  

Number of Axes Stress 

 0.1 m Quad 0.1 m Plot 

1 0.233 0.211 

2 0.116 0.100 

3 0.068 0.058 

4 0.048 0.040 

5 0.036 0.030 

6 0.028 0.023 

Canonical Analysis 

Non-symmetric Procrustes rotations were used to test the ordination similarity between the field 

and GIS 0.1 m data at both the quadrat and plot level. Figure 13 shows the GIS 0.1 m data 

superimposed and rotated to fit the field data, with the residuals of each transformation plotted. At 

the quadrat level, the sum of squares was 42.99202 with an RSME of 0.2732012. Permutation testing 

gave a Procrustes sum of squares (m12
2) value of 0. 8562 with a significance of 0.001. At the plot 
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level, the sum of squares was 5.217996 with an RSME of 0.2855367. Permutation testing gave a 

Procrustes sum of squares (m12
2) value of 0.8307 with a significance of 0.001. 

 

Figure 13. Procrustes rotation and residuals of Field and GIS 0.1 m data nMDS ordinations at Quadrat 
and Plot level.  

TWINSPAN Divisive Clustering 

Modified TWINSPAN was used to divide the data into 4 distinct clusters for the GIS 0.1 m data for 

both the quadrat and plot levels. The number of clusters (divisions) was set by the R package 

RankAggregwith Objective Function Scores of 7.74 and 6.16 for the quadrat and plot data levels, 

respectively (Table 22). Figure 14 shows the clustering results overlaid upon the nMDS ordination of 

the quadrat and plot level data.  

Table 22 Optimal number of TWINSPAN clusters (divisions) and Objective Function Score for field 
data at the quadrat and plot levels.  

Dataset Number of clusters Objective function Score 

0.1 m Quad 4 7.744942 

0.1 m Plot 4 6.163798 
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Figure 14. Comparison of ordination results from nMDS of the 0.1 m GIS data at the quadrat and plot 
levels with clustering results from Modified TWINSPAN overlaid as bounding polygons 

Indicator Species Analysis 

Indicator species analyses of the TWINSPAN results found that different species were indicative of 

each community type at both the quadrat (Table 23) and plot (Table 24) levels. For both datasets, 

the number of clusters with significant indicators (4) matched the total number of classes from the 

modified TWINSPAN analysis (4). Ten significant indicators were identified at the quadrat level, with 

2, 2, 3 and 3 significant indicators for each of the four classes. For the plot level data, six significant 

indicators were identified, with 1, 1, 2 and 2 for each of the four classes.  

Table 23. Indicator species analysis of the Modified TWINSPAN clustering results for the quadrat 
level GIS 0.1 m data. Sum of probabilities = 0.687. Sum of Indicator Values = 5.14. Sum 
of Significant Indicator Values = 4.99. 

Cluster Ground Cover Class Indicator value Probability 

1 Bare Open Ground 0.6748 0.001 

Dead F. spiralis 0.1403 0.041 

2 P. radiata 0.5903 0.001 

Grasses and Forbs 0.4369 0.001 

3 C. appressa 0.8181 0.001 

A. arenaria 0.7055 0.001 

P. esculentum 0.6489 0.001 

4 M. complexa 0.5652 0.001 

Standing Dead Biomass 0.3524 0.006 

F. spiralis 0.0583 0.025 
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Table 24. Indicator species analysis of the Modified TWINSPAN clustering results for the plot level 
GIS 0.1 m data. Sum of probabilities = 3.673. Sum of Indicator Values = 6.26. Sum of 
Significant Indicator Values = 4.88. 

Cluster Ground Cover Class Indicator value Probability 

1 Bare Open Ground 0.861 0.001 

2 M. complexa 0.6909 0.029 

3 

C. appressa 0.8055 0.025 

P. radiata 0.7725 0.006 

4 

Dead F. spiralis 0.9543 0.001 

Standing Dead Biomass 0.7983 0.021 

3.3.4 GIS 0.3 m Resolution Based Plant Community Analysis  

Ordination 

nMDS Ordination to test for relationships between sites and species was carried out on the GIS 0.3 

m data at the quadrat and plot levels using a Bray\Curtis dissimilarity index (Figure 15). The number 

of axes were set at three, at which point the ordination stress vs. dimensionality approaches 0.05 

and the reduction of stress from additional dimensionality is low (Table 24). Final ordination stress 

was 0.06737749 (Quadrat) and 0.05631183 (Plot), indicating a near excellent fit for both the quadrat 

and plot level GIS 0.3 m data (Clarke, 1993). 

 



 48 

Figure 15. nMDS Ordination and Shepard’s diagram of the GIS 0.3 m data at the Quadrat and Plot 
levels. The nonmetric fit is based on stress (S) and defined as R2 = 1-S*S, whereas linear 
fit is the squared correlation between ordination distances and dissimilarities. 

Table 25. The optimal number of TWINSPAN clusters (divisions) and Objective Function Score for GIS 
0.3 m data at the quadrat and plot levels.  

Number of Axes Stress  

 0.3 m Quad 0.3 m Plot 

1 0.295 0.282 

2 0.126 0.106 

3 0.067 0.056 

4 0.049 0.038 

5 0.037 0.030 

6 0.028 0.021 

Canonical Analysis 

Non-symmetric Procrustes rotations were used to test the ordination similarity between the field 

and GIS 0.3 m data at both the quadrat and plot level. Figure 16 shows the GIS 0.3 m data 

superimposed and rotated to fit the field data, with the residuals of each transformation plotted. At 

the quadrat level, the sum of squares was 45.60269 with an RSME of 0.281374. Permutation testing 

gave a Procrustes sum of squares (m12
2) value of 0.9082 with a significance of 0.001. At the plot level, 

the sum of squares was 5.617939 with an RSME of 0. 2962774. Permutation testing gave a Procrustes 

sum of squares (m12
2) value of 0.8944 with a significance of 0.002. 
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Figure 16. Procrustes rotation and residuals of Field and GI7S 0.3 m data nMDS ordinations at 
Quadrat and Plot level.  

TWINSPAN Divisive Clustering 

Modified TWINSPAN was used to divide the data into 9 and 5 distinct clusters for the GIS 0.3 m data 

for quadrat and plot levels, respectively. The number of clusters (divisions) was set by the R package 

RankAggreg with Objective Function Scores of 7.43 and 9.76 for the quadrat and plot data levels, 

respectively (Table 26). Figure 17 shows the clustering results overlaid upon the nMDS ordination of 

the quadrat and plot level data.  

Table 26. Optimal number of TWINSPAN clusters (divisions) and Objective Function Score for GIS 0.3 
m data at the quadrat and plot levels. 

Dataset Number of clusters Objective function Score 

0.3 m Quad 9 7.431347 

0.3 m Plot 5 9.769342 

 

 

Figure 17. Comparison of ordination results from nMDS of the 0.03 m GIS data at the quadrat and 
plot levels with clustering results from Modified TWINSPAN overlaid as bounding 
polygons 

Indicator Species Analysis 

Indicator species analyses of the TWINSPAN results found that different species were indicative of 

each community type at both the quadrat (Table 27Table 23) and plot (Table 28) levels. The number 

of clusters with significant indicators at both the quadrat (6) and plot (4) did not match the total 
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number of classes from the modified TWINSPAN analysis, which was 9 and 5 for the quadrat and 

plot levels, respectively. Ten significant indicators were identified at the quadrat level, with 1, 2, 1, 

2, 1 and 3 significant indicators for each of the six classes. For the plot level data, 10 significant 

indicators were identified, with 1, 3, 2 and 4 for each of the four classes.  

Table 27 Indicator species analysis of the Modified TWINSPAN clustering results for the quadrat level 
GIS 0.3 m data. Sum of probabilities = 0.671. Sum of Indicator Values = 4.79. Sum of 
Significant Indicator Values = 4.71. 

Cluster Ground Cover Class Indicator value Probability 

1 Grasses and Forbs 0.2487 0.001 

2 Bare Open Ground 0.3924 0.001 

Coarse Woody Debris 0.1206 0.01 

3 P. radiata 0.4336 0.001 

5 Dead F. spiralis 0.6733 0.001 

Standing Dead Biomass 0.5717 0.001 

8 M. complexa 0.5731 0.001 

C. appressa 0.6171 0.001 

P. esculentum 0.5711 0.001 

A. arenaria 0.5089 0.001 

Table 28 Indicator species analysis of the Modified TWINSPAN clustering results for the quadrat level 
GIS 0.3m data. Sum of probabilities = 0.846. Sum of Indicator Values = 6.03. Sum of 
Significant Indicator Values = 5.67. 

Cluster Ground Cover Class Indicator value Probability 

1 Grasses and Forbs 0.3181 0.001 

2 Bare Open Ground 0.6373 0.001 

R. australis 0.5532 0.006 

Coarse Woody Debris 0.5345 0.012 

4 Standing Dead Biomass 0.8455 0.001 

Dead F. spiralis 0.811 0.002 

5 M. complexa 0.6516 0.003 

C. appressa 0.6221 0.005 

P. esculentum 0.4179 0.037 

A. arenaria 0.2756 0.022 

3.3.5 GIS 0.5 m Resolution Based Plant Community Analysis  

Ordination 

nMDS Ordination to test for relationships between sites and species was carried out on the GIS 0.5 

m data at the quadrat and plot levels using a Bray\Curtis dissimilarity index (Figure 18). The number 

of axes were set at three, at which point the ordination stress vs. dimensionality approaches 0.05 

and the reduction of stress from additional dimensionality is low (Table 29). Final ordination stress 
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was 0.0673079 (Quadrat) and 0.05693242 (Plot), indicating a near excellent fit for both the quadrat 

and plot level GIS 0.3 m data (Clarke, 1993). 

 

Figure 18 nMDS Ordination and Shepard’s diagram of the GIS 0.5 m data at the Quadrat and Plot 
levels. The nonmetric fit is based on stress (S) and defined as R2 = 1-S*S, whereas linear 
fit is the squared correlation between ordination distances and dissimilarities. 

Table 29 Optimal number of TWINSPAN clusters (divisions) and Objective Function Score for GIS 0.5 
m data at the quadrat and plot levels.  

Number of Axes   

 0.5 m Quad 0.5 m Plot 

1 0.285 0.278 

2 0.124 0.107 

3 0.067 0.057 

4 0.048 0.039 

5 0.038 0.030 

6 0.029 0.021 

 

Canonical Analysis 

Non-symmetric Procrustes rotations were used to test the ordination similarity between the field 

and GIS 0.5 m data at both the quadrat and plot level. Figure 19 shows the GIS 0.5 m data 

superimposed and rotated to fit the field data, with the residuals of each transformation plotted. At 

the quadrat level, the sum of squares was 45.6029 with an RSME of 0.2813747. Permutation testing 
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gave a Procrustes sum of squares (m12
2) value of 0.9082 with a significance of 0.001. At the plot level, 

the sum of squares was 5.601834 with an RSME of 0.2958524. Permutation testing gave a Procrustes 

sum of squares (m12
2) value of 0.8918 with a significance of 0.002. 

 

Figure 19 Procrustes rotation and residuals of Field and GIS 0.5 m data nMDS ordinations at Quadrat 
and Plot level. Quadrat level sum of squares = 45.6029, RSME = 0.2813747. Plot-level 
sum of squares = 5.601834, RSME = 0.2958524 

TWINSPAN Divisive Clustering 

Modified TWINSPAN was used to divide the data into 5 and 10 distinct clusters for the GIS 0.3 m 

data for quadrat and plot levels, respectively. The number of clusters (divisions) was set by the R 

package RankAggreg with Objective Function Scores of 7.85 and 7.48 for the quadrat and plot data 

levels, respectively (Table 30). Figure 20 shows the clustering results overlaid upon the nMDS 

ordination of the quadrat and plot level data.  

Table 30 Optimal number of TWINSPAN clusters (divisions) and Objective Function Score for GIS 0.5 
m data at the quadrat and plot levels. 

Dataset Number of clusters Objective function Score 

0.5 m Quad 5 7.848975 

0.5 m Plot 10 7.483927 
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Figure 20. Comparison of ordination results from nMDS of the 0.05 m GIS data at the quadrat and 
plot levels with clustering results from Modified TWINSPAN overlaid as bounding 
polygons 

Indicator Species Analysis 

Indicator species analyses of the TWINSPAN results found that different species were indicative of 

each community type at both the quadrat (Table 31) and plot (Table 23) levels. The number of 

clusters with significant indicators at the quadrat (5) level matched the number of TWINSPAN 

clusters (5). At the plot level, however, the number of clusters with significant indicators (2) did not 

match the total number of classes from the modified TWINSPAN analysis (10). Nine significant 

indicators were identified at the quadrat level, with 1, 1, 2, 3 and 2 significant indicators for each of 

the five classes. For the plot level data, 2 significant indicators were identified, with 1 each of the 

two classes.  

Table 31 Indicator species analysis of the Modified TWINSPAN clustering results for the quadrat level 
GIS 0.5 m data. Sum of probabilities = 0.197. Sum of Indicator Values = 3.44. Sum of 
Significant Indicator Values = 3.31. 

Cluster Ground Cover Class Indicator value Probability 

1 Bare Open Ground 0.4717 0.001 

2 P. radiata 0.4016 0.001 

3 Coarse Woody Debris 0.355 0.001 

R. australis 0.1324 0.001 

Standing Dead Biomass 0.7721 0.001 

Dead F. spiralis 0.5397 0.001 

M. complexa 0.2643 0.001 

5 Grasses and Forbs 0.2835 0.001 
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C. appressa 0.0928 0.029 

Table 32 Indicator species analysis of the Modified TWINSPAN clustering results for the quadrat level 
GIS 0.5m data. Sum of probabilities = 1.66. Sum of Indicator Values = 4.71. Sum of 
Significant Indicator Values = 0.96. 

Cluster Ground Cover Class Indicator value Probability 

8 Grasses and Forbs 0.2012 0.001 

9 A. arenaria 0.7598 0.049 

3.3.6 GIS 1 m Resolution Based Plant Community Analysis  

Ordination 

nMDS Ordination to test for relationships between sites and species was carried out on the GIS 1 m 

data at the quadrat and plot levels using a Bray\Curtis dissimilarity index (Figure 21). The number of 

axes were set at three, at which point the ordination stress vs. dimensionality approaches 0.05 and 

the reduction of stress from additional dimensionality is low (Table 33). Final ordination stress was 

0.07730923 (Quadrat) and 0.06223447 (Plot), indicating a near excellent fit for both the quadrat and 

plot level GIS 0.5 m data (Clarke, 1993). 
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Figure 21 nMDS Ordination and Shepard’s diagram of the GIS 1 m data at the Quadrat and Plot levels. 
The nonmetric fit is based on stress (S) and defined as R2 = 1-S*S, whereas linear fit is 
the squared correlation between ordination distances and dissimilarities. 

Table 33 Optimal number of TWINSPAN clusters (divisions) and Objective Function Score for GIS 0.5 
m data at the quadrat and plot levels.  

Number of Axes   

 1 m Quad 1 m Plot 

1 0.279 0.275 

2 0.135 0.109 

3 0.078 0.062 

4 0.053 0.043 

5 0.041 0.032 

6 0.033 0.024 

Canonical Analysis 

Non-symmetric Procrustes rotations were used to test the ordination similarity between the field 

and GIS 1 m data at both the quadrat and plot level. Figure 16 shows the GIS 1 m data superimposed 

and rotated to fit the field data, with the residuals of each transformation plotted. At the quadrat 

level, the sum of squares was 46.01828 with an RSME of 0.2826532. Permutation testing gave a 

Procrustes sum of squares (m12
2) value of 0.9165 with a significance of 0.001. At the plot level, the 

sum of squares was 5.603201 with an RSME of 0.2958885. Permutation testing gave a Procrustes 

sum of squares (m12
2) value of 0.892 with a significance of 0.001. 
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Figure 22 Procrustes rotation and residuals of Field and GIS 1 m data nMDS ordinations at Quadrat 
and Plot level. Quadrat level sum of squares = 46.01828, RSME = 0.2826532. Plot-level 
sum of squares = 5.603201, RSME = 0.2958885. 

TWINSPAN Divisive Clustering 

Modified TWINSPAN was used to divide the data into 10 distinct clusters for the GIS 1 m data for 

both the quadrat and plot levels. The number of clusters (divisions) was set by the R package 

RankAggreg with Objective Function Scores of 6.28 and 6.68 for the quadrat and plot data levels, 

respectively (Table 34). Figure 23 shows the clustering results overlaid upon the nMDS ordination of 

the quadrat and plot level data.  

Table 34 Optimal number of TWINSPAN clusters (divisions) and Objective Function Score for GIS 1 m 
data at the quadrat and plot levels. 

 

Figure 23. Comparison of ordination results from nMDS of the 1 m GIS data at the quadrat and plot 
levels with clustering results from Modified TWINSPAN overlaid as bounding polygons. 

Indicator Species Analysis 

Indicator species analyses of the TWINSPAN results found that different species were indicative of 

each community type at both the quadrat (Table 35) and plot (Table 36) levels. The number of 

clusters with significant indicators at both the quadrat and plot level (10) did not match the total 

number of classes from the modified TWINSPAN analysis, which was 5 and 4 for the quadrat and 

Dataset Number of clusters Objective function Score 

1 m Quad 10 6.283789 

1 m Plot 10 6.675333 
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plot levels, respectively. 9 significant indicators were identified at the quadrat level, with 2, 1, 1, 3, 

and 2 significant indicators for each of the nine classes. For the plot level data, 6 significant indicators 

were identified, with 1, 1, 3 and 1 for each of the four classes.  

Table 35. Indicator species analysis of the Modified TWINSPAN clustering results for the quadrat 
level GIS 1 m data. Sum of probabilities = 0.878. Sum of Indicator Values = 3.35. Sum of 
Significant Indicator Values = 3.24. 

 cluster indicator_value probability 

GFMHW 1 0.2054 0.001 

P. radiata 1 0.165 0.006 

OG 2 0.3334 0.001 

M. 
complexa 7 0.4445 0.001 

C. appressa 9 0.5616 0.001 

P. 
esculentum 9 0.3992 0.001 

L. arboreus  9 0.1719 0.001 

dFISsp 10 0.5596 0.001 

SDM 10 0.4036 0.001 

Table 36 Indicator species analysis of the Modified TWINSPAN clustering results for the plot level 
GIS 1 m data. Sum of probabilities = 2.124. Sum of Indicator Values = 4.79. Sum of 
Significant Indicator Values = 2.74. 

  cluster indicator_value probability 

GFMHW 5 0.2219 0.001 

SDM 7 0.5388 0.048 

dFISsp 8 0.7156 0.027 
L. 
arboreus  8 0.6645 0.037 
C. 
appressa 8 0.5836 0.032 
M. 
complexa 10 0.5533 0.02 

    

 

3.4 Comparison of field and GIS data community analysis 

3.4.1 Ecological meaning of the cluster divisions 

Field data 

The field community data were divided into three distinct and ecologically relevant clusters using 

modified TWINSPAN analysis. Table 19 shows the most significant indicators across the three 

clusters (Table A. 13 shows the complete distribution of all indicators at each site). These three 

clusters are characteristic of distinct fore-dune (Cluster 1), mid-dune (Cluster 2) and rear-dune 

Kaitorete Spit communities (Cluster 3).  
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Sites that were classified in cluster 1 were dominated by pīngao, both live (0.54) and dead (0.67), 

marram grass (0.05), open ground (0.88) and coarse woody debris (0.34), e.g. driftwood. In these 

areas, the sites are likely more exposed to the main ‘erosion front’ where Aeolian forces create an 

unstable sand environment, meaning that slower-growing species are unable to use the limited time 

and shelter in which to colonise. Cluster 2 is characteristic of the mid-rear-dune environment; larger 

species, such as M. complexa (0.24) and C. appressa (0.30), are common on the more-stable and 

sheltered areas of the dunes and are frequently seen growing together. Grasses (0.59) and Forbs 

(0.71) are also able to grow in these areas, as the level of disturbance is low enough to allow for 

colonisation of the shorter-lived species. In the low-lying areas of the mid-dune, large areas of gravel 

and sand beds are dominated by low-density grasses and forbs, as well as areas of R. australis (0.19). 

The stability of these areas is such that it allows for lichens and bryophytes to take hold. R. australis, 

M. alpinus and P. cita were unique to Cluster 2, which further supports the mid-rear-dune 

environment. Cluster 3 is characterised by the presence of both live and dead P. esculentum (0.92 

and 0.93, respectively) and dead standing biomass (0.74). P. esculentum was unique to Cluster 3, 

indicating that this cluster was made up of sites that lay towards the rear of the dunes.  

The plot level data shows a similar distribution of environmental indicators to the quadrat data. 

Fewer significant indicators were identified at the plot level (Table 20) compared to the quadrat 

data, however more non-significant identifiers (Table A. 12) were found in total. For Cluster 1 (fore-

dune), coarse woody debris (0.35) and A. arenaria (0.06) were no longer identified as significant 

indicators of the cluster, which at the larger sampling scale likely became rarer relative to the rest 

of the plot. For Cluster 2 (mid-dune), M. complexa (0.10) is no longer a significant ecological indicator 

alongside lichens and bryophytes. The loss of M. complexa was interesting, as it was a key vegetation 

feature of the mid-dune in field observations. Cluster 3 retained the same indicators as at the 

quadrat level, however, there was an increase in indicator value for dead P. esculentum (0.93 

increased to 0.99) and a decrease for P. esculentum (0.92 decreased to 0.86) and standing dead 

biomass (0.74 decreased to 0.69). 

Changing the sampling resolution affected the significance of the presence of dead plant material as 

an ecological indicator at the relatively lower indicator levels (Table A. 13, Table A. 12). Dead C. 

appressa was identified for Cluster 2 at the quadrat level (0.14) but not at the plot level for any 

cluster. Dead L. arboreus increased in significance for Cluster 1 (0.07 increased to 0.15) and was a 

new indicator for Cluster 3. Dead R. australis (0.08) and dead P. cita (0.10) were new indicators for 

Cluster 1 and Cluster 2, respectively. Standing dead biomass was no longer a significant indicator for 

Cluster 2.  
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GIS data 

The results of the clustering and indicator species analysis for the GIS data are sl ightly less intuitive 

than the field data, however, cluster divisions do seem to have been made based on ecological 

differences. For both the quadrat (Table 23) and plot data (Table 24), four different plant 

communities were identified, each with unique ecological identifiers. At the quadrat level, Cluster 1 

shows dead F. spiralis and bare open ground as being the only significant identifiers, although also 

included in the cluster are standing dead biomass, coarse woody debris, grasses and forbs (Table A. 

14). This cluster is the only one to show coarse woody debris as an indicator, which suggests that it 

may relate to the fore-dune environment. Cluster 2 shows P. radiata and mixed grasses as the 

significant indicators, but also includes M. complexa, R. australis and C. appressa (Table A. 14), all of 

which are indicative of mid-rear-dune vegetation. Cluster 3 has C. appressa, A. arenaria and P. 

esculentum as significant indicators, yet also includes mixed grasses, M. complexa, P. radiata and 

bare open ground. The presence of both pines and bracken fern indicates sites belonging to the rear-

dune systems. Broom and Muehlenbeckia are also found in the Rear-dunes, often growing together 

in a densely tangled structure. Cluster 4 is indicated by the presence of Muehlenbeckia and standing 

dead biomass, as well as R. australis, mixed grasses, P. esculentum and F. spiralis. This was the only 

cluster that registered pīngao as an indicator at the quadrat level for GIS 0.1 m. Based on these 

indicators, it is likely that these sites are indicative of the early-mid-dune, in that we see sites along 

the back of the active fore-dunes, the gravel and raoulia beds of the dune hollows and the stabilised 

mid-dunes that contain the standing dead matter and Muehlenbeckia.  

At the plot level, the GIS 0.1 m data becomes a little less clear regarding how it translates into the 

real world distribution of sites (Table 24, Table A. 15). Clusters 1 & 2 are characterised by only one 

significant indicator each; bare open ground and M. complexa, respectively. The also share coarse 

woody debris, mixed grasses, P. esculentum and R. australis as less significant indicators. CWD was 

attributed more towards Cluster 1 (0.25) than Cluster 2 (0.06), which alongside the significance of 

bare open ground (0.86) would indicate areas near or including the fore-dune. The presence of P. 

radiata (0.12), P. esculentum (0.10) and R. australis (0.13) in Cluster 1 would suggest sites more 

towards the rear, however, these low values may be attributed to classification error. Compared to 

Cluster 1, Cluster 2 shows the unique indicators of C. appressa and SDM, although at relatively low 

levels (0.07 and 0.11, respectively). The lack of OG as an indicator for Cluster 2, in combination with 

those that are present, suggests the mid-rear-dunes are typically stable enough to allow for higher 

levels of ground cover. Cluster 3 was indicated by both C. appressa (0.81) and P. radiata (0.77). 

Cluster 3 was the only cluster to register L. arboreus (0.31), which, in combination with mixed grasses 

(0.37), M. complexa (0.20), P. esculentum (0.25) and OG (0.08) would again indicate areas towards 

the mid-rear-dunes. How this differs from Cluster 2 could be explained by the narrowness of the 
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western end of the dune system compared with the eastern end. The old P. radiata shelterbelt and 

the surrounding L. arboreus populations at the western end of the site is in close proximity to the 

Mid and Fore-dunes in that area. These results would suggest that Clusters 1 & 2 represent relatively 

similar mid-rear-dune environments, although they are separated by the difference in dune 

structure from the western (Cluster 2) and eastern (Cluster 3) ends of the site. Cluster 4 is 

significantly indicated by dead F. spiralis (0.95) and SDM (0.80). The remainder of the indicators for 

Cluster 4 are relatively low compared to these; P. esculentum (0.10), M. complexa (0.06) and mixed 

grasses (0.05). Based on these results, Cluster 4 may be representative of the back of the Mid-dune, 

however, this comes with a degree of uncertainty.  
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Chapter 4 

Discussion 

4.1 The suitability for UAS Remote Sensing for monitoring Kaitorete Spit 

In order to achieve effective management of natural habitats, sound knowledge and understanding 

of their inherent ecological characteristics and qualities are required (Spanhove et al., 2012). 

Kaitorete Spit, and the important ecological communities that reside there are expansive and both 

structurally and ecologically diverse. Accurate field-based monitoring of processes is typically 

unfeasible due to time and financial constraints. To gain an understanding of the health and 

functioning of ecosystems and communities, we must understand the key ecological drivers and 

quality indicators that define these communities. This thesis research sought to evaluate the use of 

UAS based remote sensing imagery for the detection and analysis of at-risk plant communities at 

Kaitorete Spit. Using both data types, the major plant communities of the dune system at Kaitorete 

Spit, i.e. the fore, mid and rear-dunes, were able to be identified using modified TWINSPAN 

clustering and Indicator Species Analysis. The results show that community analyses based on UAS 

imagery can be used to identify some, but not all, plant species and ground cover to an acceptable 

standard of accuracy. These data can then be used to identify meaningful ecological indicators for 

distinct, real-world dune communities. The relevance of the UAS imagery to the effective 

management of Kaitorete Spit depends on the scale at which we monitor habitat quality and the 

type of ecological monitoring we are attempting to conduct. 

Characterising the scale of ecological patterns is critical for their spatial and spectral identification 

in both field and RS techniques (Corbane et al., 2015). If we can use UAS imagery to monitor coarse 

scale plant community and dune habitat, then does the lack of direct fine-scale species monitoring 

matter? In order to answer this, we need to break down the methods and scales at which we 

measure community health. Kaitorete Spit is home to a number of rare and threatened species. 

Many of the key indicators that were identified in the field data, however, were not present in the 

GIS data; the potential reasons for which will be discussed below.  

4.1.1 The scale of ecological phenomena at Kaitorete Spit 

The field data, based on real-world information, showed ecologically stronger clustering compared 

with that of the GIS information. Comparing the number of cover classes for each dataset alone 

found 25 and 12 classes for the field and GIS data, respectively. Much of this undoubtedly came from 

the ability to identify rare species, as well as to identify the type of standing dead material to the 

species level.  
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Identification of species using GIS imagery was challenging. Training samples for classification classes 

could only be built when a positive identification of cover was achieved. Much of the knowledge 

required for this came from exploratory observations into the field site. Rare species that were 

identified in the field data (e.g. L. ferocissimum, M. alpinus, and P. prostrata) were either not seen 

in the imagery or misidentified as another ground cover type. For the field data, we also saw a 

differentiation between grasses and forbs, which were combined in the GIS data into mixed grasses. 

The classes of lichens and bryophytes were not included in the GIS data, as their typically sub-pixel 

size meant that they were indistinguishable from the surrounding cover type, which was likely open 

ground.  

The greater number of species and cover types available in the field data allowed for better 

differentiation of clusters and cluster indicators. When comparing the types of indicators shown to 

be significant for cluster divisions at the quadrat level there are classes from the field data (Table 

19) that were not identified in the GIS analyses (Table 23). A. arenaria were indicative of Cluster 1 

(fore-dune) for the field data. For Cluster 2 (mid-dune), the presence and differentiation of grasses, 

forbs, bryophytes and lichens made for easier ecological interpretation of the results compared to 

the GIS data. At the non-significant level for the field data (Table A. 12), M. alpinus (0.17) and P. cita 

(0.7) were identified as indicators for Cluster 2. At the plot level (Table A. 13), P. cita (0.70), grasses 

(0.52) and bryophytes (0.45) were significant indicators of Cluster 2. These differences between the 

field and GIS data made interpretation of the GIS community data somewhat challenging, reducing 

its overall effectiveness and explanatory power. 

4.1.2 Detectable indicators of community division and health 

Common species with high detection ability define certain ecological communities  

GIS data were able to delineate similar course-scale ecological communities when compared to the 

field data based on a similar, but not identical, set of ecological factors. At this level, the data are 

arguably of value, as it would enable broad-scale monitoring of these key habitats. The majority of 

the existing literature surrounding the use of UAS for habitat monitoring focuses on coarse-scale 

dynamics, such as quantifying the total amount of vegetation or a mixed species community (Zahawi 

et al., 2015), plant functional types (Roth, Roberts, Dennison, Peterson, & Alonzo, 2015) or the 

amount of open ground and water (Gong, Jiao, Zhou, & Li, 2011). While informative, at these broad 

scales the fine-scale ecological drivers of differences in community health and structure can be lost 

(Elliott & Jules, 2005). Failure to link course-scale habitat features to single biophysical 

characteristics restricts the application of habitat characterisation (Groom, Mücher, Ihse, & Wrbka, 

2006). 



 63 

The mixed performance of the GIS data in separating the mid-dune plant communities is a significant 

limitation of the application of RS for monitoring Kaitorete Spit. The main conservation values of the 

mid-dunes based on field observations come from the structural heterogeneity of this area. This 

zone has a mixture of environmental gradients, with more exposed areas allowing for dune 

colonising species, such as pīngao to establish, and more sheltered and stable areas that facilitate 

higher within-class diversity. This diversity and the high ecological value it provides comes at a cost 

when trying to characterise the habitat using remote sensing, as habitats within such dynamic 

systems can occur in a mosaic pattern, making clear delineation and assessment challenging (Evans, 

2006). These within-habitat communities may also display differences in the timing and duration of 

phenological events, which can further increase the spectral variability within a given class 

(Klosterman et al., 2018). Differentiation at the between and within-habitat levels can be 

challenging, although the scale at which habitats are characterised will not be the same for all 

habitats within a given area (Vanden Borre et al., 2011).  

For Kaitorete Spit, while a reduction in the spatial resolution of the remote sensing data led to a 

decrease in the ability to detect key drivers of community differentiation, the results of increasing 

sampling sizes (smaller quadrats to larger plots) indicate that 2 m x 2 m sample size is too fine-scale 

for analyses. Comparing the nMDS ordination stress of the field and native GIS data at the quadrat 

vs. plot scale shows a reduction in ordination stress and an increase of linear fit for both the field 

and GIS data at each of the four resolutions. Further evidence for the fact that the vegetation 

dynamics at Kaitorete Spit exist as a fine scale matrix across larger spatial extent comes from a 1992 

study of the vegetation in the same area of this study. Partridge (1992) used a nested sampling 

design of six 200 m x 220 m sampling sites within the mid-dune (with one at 240 m), in which 111, 5 

m x 5 m plots were assessed for species relative abundance at the 1 m x 1 m scale. The intricate 

detail of this sampling design allowed for the differentiation of 20 different plant communities based 

on the 31 most abundant species found and their respective abundances when compared to dune 

topography and distance from the shoreline. Pudji (1997) conducted a similar study using nested 

study sites which were 200 m across at the end parallel to the high-tide line, and extending north 

between 300 m and 750 m depending on dune vegetation distribution. These were divided into 50 

m x 50 m blocks, in which a 2 m x 2 m quadrat was sampled for species presence and relative 

abundance. Using TWINSPAN, these were divided into 8 different plant communities based on 

Indicator Species Analysis across 5 major plant vegetation zones. It should be noted that the authors 

used a much more robust level of species identification, especially for the different grasses, forbs 

and bryophytes found. The five zones matched those discussed in this current study; the fore-dunes, 

deflation hollows, inner dunes (mid-dunes), sandy plains (grassfields) and old dunes (P. esculentum 

dominant areas). For this study, sampling transects extended from the shoreline out to the very back 
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of the dunes and the beginning of the grass fields and were placed at 300 m intervals with plot sizes 

of 6 m x 6 m and cover estimates based on a 2 m x 2m sampling unit. This sampling design was not 

very effective at describing the highly variable mid-dune environment, as is evident in the lack of 

definitive, ecologically relevant classes in the GIS data.  

Of the easily detectable species that strongly indicate community divisions, the native or ecologically 

significant species, while locally common, are often rare or threatened at the regional and national 

scale. This is particularly true for the active fore and mid-dune environment where the prevalence 

of the native sand-binder, pīngao, forms part of the largest remaining natural population of this at-

risk species (Lettink, 2008). The direct detection of larger species, such as C. appressa, M. complexa 

and R. australis, which were indicative of the mid-dune environments, is also of significance. C. 

appressa is one of the only vascular plant species endemic to Kaitorete Spit and all three species, as 

well as pīngao, are important host species for many of the 130 Lepidoptera species found at 

Kaitorete Spit, of which 6 are endemic to the area itself (Patrick, 1994). The fleshy fruit of M. 

complexa is also an important food source for native lizards, which are, in turn, important for seed 

dispersal (Whitaker, 1987). The structural density of M. complexa and C. appressa also provide 

habitat for lizards that is safe from most predatory species (Lettink, 2008).  

The mid and rear dunes are characterised by a wide range of vegetation with most of the species 

detected in these areas being shared right across the mid and rear-dunes. Rather than species 

presence and absence, for much of these communities the differences exist in the physical growth 

structure and the degree to which each species contributes to the overall species assemblage. These 

inherent biological features of the dune vegetation at Kaitorete Spit again limit the current 

application of UAS based remote sensing. The results of this study are in agreement with other 

studies which show that in heterogeneous environments, with fine-scale features and continuous 

between-habitat variability, such as those found at Kaitorete Spit, mapping accuracy is reduced 

(Varela, Rego, Iglesias, & Sobrino, 2008). In these scenarios, detection of the indicators of these 

environments may be limited to relatively course-scale homogenous cover (Irisarri, Oesterheld, 

Verón, & Paruelo, 2009). Zweig et al. (2015) in a recent and rather similar study stated that they 

were one of the first studies to use UAS imagery not as a photo or map, but rather as data for fine-

scale community classification. However, the authors used expert knowledge of their system to 

define communities, not using the presence or absence of different species, but rather by estimating 

the density of those species within the community itself. Of the nine classes used in their 

classifications, eight were either mixed species assemblages or variations of a cover type based on 

the surrounding cover. The only single species cover was also only identified to the genus level. 

Zweig et al. (2015) further increased classification accuracies by reducing the total number of plant 

communities from 9 to 3 by aggregating similar or related community types. While some fine-scale 
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features were lost, more important features, such as major structural differences (wet prairie vs. 

slough (waterbody-based vegetation)), were retained. Marceau et al. (1994) in a much larger study 

using aerial imagery ranging from 5 m – 10 m found that the aggregation of certain clusters can lead 

to increased classification accuracies, however, results were heavily dependent on class species 

membership and the resolution of the imagery. 

Increasing the resolution of the data, both spatial and spectral, to better match the scale of 

ecological indicators can aid in species detection. Husson, Ecke, and Reese (2016), in a study of non-

submerged aquatic vegetation, were able to accurately identify individual species using 5 cm RGB 

imagery, although classification accuracy decreased when vegetation complexity increased. A similar 

reduction of accuracy from increased complexity was found in an earlier study by (Husson, Hagner, 

& Ecke, 2014). When communities are lacking any distinct spatial or spectral features, community 

level classifications have been shown to perform poorly.  

In certain situations however, a decrease in spatial resolution may be more beneficial. With an 

increase in the spatial resolution of RS imagery comes with an increase of the within-class spectral 

variability, causing a ‘salt and pepper’ effect which can reduce the accuracy of classification results 

(Pu, Landry, & Yu, 2011). In a study using hyperspectral data to detect individual and mixed invasive 

species, a reduction in spatial resolution still resulted in significantly accurate classifications, 

however, this was attributed to the large spatial extent and the dominant cover of certain species 

(Underwood et al., 2007). Roth et al. (2015) found an increase in pixel size from roughly 3 m to 20 m 

led to an overall increase in the classification of plant communities based on plant functional types. 

Zweig et al. (2015) stressed the importance of matching image resolution in wetland communities 

to that of the texture of ecological phenomena being studied. In their research, which focused more 

on habitat structure than species presence, for this broader level of community differentiation, the 

authors found the native 5 cm imagery to be of too high resolution compared to the texture of these 

plant communities. The authors found that by resampling the image to 0.5 m (a ten-fold increase in 

spatial resolution) they could produce more intuitive and accurate results. When compared to this 

study, which focused primarily on the identification of individual species, resampling the 

classification data to a lower accuracy resulted in a loss of the overall indicator values for the site, 

as well as an increase in ordination and Procrustes rotational stress.  

Ecologically significant species are actively controlled, creating artificial rarity and 
an increased within-class spectral variation. 

When we consider the types of risks that these dune communities face, the most important 

indicators of fore-dune habitat quality exist at a fine ecological scale, such as the detection of 

ecologically significant species. The detection of invasive species at Kaitorete Spit is just as important 



 66 

as detecting native species for habitat quality and risk monitoring. The active dunes – both fore and 

mid, are at risk from invasive plant species that function to stabilise the dunes. Once stabilised, the 

native species are out-competed and the amount of open-ground and other suitable habitats for 

plants, invertebrates and vertebrates is reduced (Molloy et al., 1991; Partridge, 1992). 

For the fore-dune habitat, the three main species that pose the greatest risk are P. radiata, L. 

arboreus and A. arenaria. A significant issue in assessing the detection of invasive species within a 

nature reserve, such as the Kaitorete Spit Science and Conservation Area, is that these species are 

actively controlled within the area. Because of this, the total population number is typically quite 

low. For species such as L. arboreus, which can rapidly colonise available habitat, there exists a wide 

range of plant ages and phenological states. This would undoubtedly affect the ability to detect and 

effectively characterise the populations when building training samples for classification, as within-

class spectral variability is increased (Klosterman et al., 2018). When detecting multiple invasive 

species, different species will require different levels of spatial and spectral resolution in order to 

maximise accuracy in detection (Underwood et al., 2007). An example of species size and growth 

form affecting its spectral characteristics at Kaitorete Spit would be P. radiata. Individual trees can 

be readily identified; however, their inherent structural complexity and within-class spectral 

variation undoubtedly contribute to the classes’ lower accuracy. Roth et al. (2015) state that 

minimising such internal spectral variation is crucial for accurate identification of species with 

complex canopy structures. Detection of fine-scale canopy components and environmental effects, 

such as shadowing, leads to an increase of within-class spectral variation, which has been shown to 

negatively affect classification accuracies (Clark, Roberts, & Clark, 2005). Relatively course-scale 

imagery has the effect of spatial and spectral averaging of canopy structure and individual tree 

crown geometry, which can improve classification accuracies up to a certain resolution (Roth et al., 

2015). 

Underwood et al. (2007) found that when an invasive species is spectrally distinct and present within 

a relatively homogenous cover type with low within-class spectral variability, then the spectral 

rather than spatial resolution is of greater significance to classification and detection. However, in 

heterogeneous mixed-species environments, such as those in the mid and rear-dunes at Kaitorete 

Spit, accurate detection of invasive species required higher spectral resolution. The authors found 

that when using multiband imager rather than hyperspectral, classification accuracy of the intact 

heterogeneous communities (those without invasive species) reduced from 81% to 26% as measured 

by User’s Accuracy.  

Deciding on the most appropriate scale requires trade-offs depending on the relevance or perceived 

risk for each species in question. Most, if not all other UAS studies start with a priori knowledge of 
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the specific habitat or community types that are present in their study (Franke, Keuck, & Siegert, 

2012; Gonçalves et al., 2016; Mucher et al., 2013; Rapinel, Rossignol, Hubert-Moy, Bouzille, & Bonis, 

2018; Vanden Borre et al., 2011). Underwood et al. (2007) state that appropriate spatial resolutions 

for a given species could be derived a priori from limited field data using tests to determine the 

highest correlation of spatial resolution and explain community variability. In addition to a better 

definition of optimal spatial resolution for a given species, creating a spectral training sample for 

individual classes from independent sources could also be a potential solution. Roth et al. (2015) 

found that training samples based on fine-scale imagery could be used to classify coarse-scale 

images. Schaaf, Dennison, Fryer, Roth, and Roberts (2011) also found that when fine-scale training 

samples are used on coarse-scale imagery, they perform better than coarse-scale training samples 

derived from the same image. Using training data from independent RS imagery at the same spatial 

and spectral scales has been shown to create accurate classifications on separate images (Su & 

Gibeaut, 2017). Before the implementation of these techniques at Kaitorete Spit, more testing would 

be recommended, as using training data from other areas would likely also increase the chance of 

errors from between-site spectral variation.  

The consideration of the amount of effort and resources to invest for the monitoring of invasive 

species is relevant when bearing in mind the potential impacts of delaying control operations until 

populations are large enough to detect accurately via RS. For larger species such as P. radiata that 

take years to reach reproductive age, this is perhaps less of an issue. For species like L. arboreus 

which can rapidly colonise an area and cause sudden ecosystem change (Pickart, 2004), the best 

time to control such a species might be when they are too small to detect via RS. The monitoring of 

populations with low-density or detectability can be instrumental in the effective control of invasive 

species, as they can enable detection of recently established “founder” populations that can be 

targeted for control (Lodge et al., 2006). Outright eradication of these species is likely unfeasible at 

this point in time due to the prominence of source populations in the surrounding landscape. 

Continued control operations are important, however, as a reduction in population density can be 

enough to significantly increase the effect of stochastic events in reducing population densities even 

more. At Kaitorete Spit, herbivorous predation and fungal pathogens are known to periodically cause 

crashes in the local L. arboreus populations (Molloy et al., 1991).  

Other detectable factors 

The ability of the GIS data to differentiate plant communities were negatively affected by its inability 

to differentiate between different types of standing dead biomass. The ability of the field data to 

detect and identify types of standing dead matter also enhanced the separability of clusters. Dead 

F. spiralis was able to be identified in the GIS data and were indicative of the fore-dune environment 
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for both datasets. This was the only identifiable dead matter class for the GIS data. The field data, 

for which species identification was much more readily available, readily benefited from this level of 

identification. Dead P. esculentum was a significant indicator of the rear-dunes from the field data 

at both the quadrat and plot levels. While not identified per se in the GIS data, due to the way the 

training samples were made it is likely the class for P. esculentum included both live and dead 

material as they were typically in immediate proximity to each other in the field. At the non-

significant level, dead L. arboreus was indicative of Cluster 1 for the quadrat level and for both 

Cluster 1 and 3 at the plot level. The relevance of identifiable dead material was much more 

pronounced at the plot level, which further enhanced cluster separability in the field data compared 

to the GIS. Dead R. australis was indicative of Cluster 1, and dead P. cita and C. appressa were 

indicators of Cluster 2.  

Quantification of dead matter accumulation is used an as an indicator of disturbance (Christina 

Eisfelder, Kuenzer, & Dech, 2010), fire risk modelling (Arroyo, Pascual, & Manzanera, 2008; Garcia 

et al., 2011; Rollins, Keane, & Parsons, 2004; Shin et al., 2018) and bioaccumulation/nutrient cycling 

(G. D. Cook, Meyer, Muepu, & Liedloff, 2016) and productively (C. Eisfelder, Kuenzer, Dech, & 

Buchroithner, 2013; Pullanagari, Kereszturi, & Yule, 2017). The detection of non-photosynthetic 

components within multispectral imagery is a challenge due to the fact that the reflectance of such 

material is similar to that of bare soil (Qi & Wallace, 2002) or features such as moss and lichen (Xu 

et al., 2014). The presence of dead material at Kaitorete Spit indicates the difference in disturbance 

between the fore-dune and mid-dunes; however, it may also be present as a result of invasive 

species control operations. In fact, the potential for UAS imagery to detect negative effects of weed 

control on species such as pīngao was one of the initial management questions for this study. The 

risk of fire to the dune vegetation at Kaitorete Spit is also a serious threat to biodiversity and dune 

stability, and remote sensing is used in coastal environments to monitoring ecosystem-level 

responses to such events (Shumack et al., 2017). Hyperspectral imagery can be used to detect non-

photosynthetic vegetation via the use of vegetation indices such as the Cellulose Absorption Index 

(CAI) (Guerschman et al., 2009; Ren & Zhou, 2012). (Xu et al., 2014) investigated the relationship 

between NDVI and varying amounts of dead matter in grassland ecosystems and found that dead 

matter influences the relationship between live material and the NDVI. This may have implications 

for classifying vegetation in that when building training samples for a given species which exists in 

high and low disturbance environments, the presence of dead material in close proximity (or within 

the same pixel) will contribute towards greater within-class spectral variation.  
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4.1.3 Non-detectable indicators of community division and health 

There are three main explanations for rarity and or reduced representation in ecological data: highly 

specific endemism, naturally sparse distribution, and poor detection based on insufficient data 

collection (Kunin & Gaston, 1993). Understanding how a particular species may fit into one of these 

categories is of vital importance to effective environmental monitoring and planning (de Siqueira, 

Durigan, de Marco Júnior, & Peterson, 2009).  

Common species with sub-pixel spatial extents define ecologically important zones 
that are not detectable via remote sensing 

The mid-dune community, according to the indicator species analysis of the field data, was most 

characterised by small species, such as grasses, forbs, bryophytes and lichens. Larger species, such 

as C. appressa and M. complexa, are also indicative, but less so than the smaller species. These 

smaller species make up the dominant vegetation of a significant community type that lays within 

this mid-dune in the dune hollows (referred to as gravel basements in (Partridge, 1992)). These areas 

are large, flat and stable gravel beds which are formed either naturally from dune deflation, or are 

remnants of historical mining in the area (Partridge, 1992) The dune hollows are important breeding 

sites for shore-breeding bird species, and also are home to the endemic plant C. ‘kaitorete’ whose 

low growth-form is easily outcompeted by taller exotics. Craspedia sp. and R. australis, other key 

species found in these areas, were listed as host species for a number of native moths in the area 

(Patrick, 1994). Apart from grasses that can form larger areas of relatively high cover, the remainder 

of these indicative cover types typically, grow to sizes that would be in the sub-pixel range, even 

when using very high-resolution data like that used in this study. While not identified as a different 

cluster in the TWINSPAN analysis, further method revisions would likely have identified these zones 

as a separate cluster. If the key indicator species for these areas are too fine-scale to be detected 

via GIS based on the methods used in this study, then monitoring of these environments would not 

be viable.  

Outside of the mid-dune hollows, detection of the sub-pixel indicator species mentioned above, as 

well as similarly sized ecologically significant species within the grassland areas was further limited 

because these species characteristically form part of diverse species assemblages within habitats. 

The issues surrounding the identification of individual species in mixed-species assemblages were 

discussed in Chapter 1.3. In this case, direct detection of these species remains unachievable without 

sub-decimetre pixel resolution. Roth et al. (2015) found that even with hyperspectral data, classes 

with patch sizes approaching or less than the spatial resolution of the data could not be mapped 

accurately at coarse resolutions. Underwood et al. (2007) found that when classifying 

heterogeneous scrub communities, a lack of defining spatial or spectral patterning meant that 
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similar classification accuracies were achieved regardless of spectral or spatial resolution. Spanhove 

et al. (2012) state that despite recent developments in RS technology and statistical data analysis 

approaches, the successful identification of small individual plants whether as individuals or part of 

heterogeneous habitat matrixes remains a highly significant barrier towards the application of RS in 

ecological monitoring. While the loss of fine-scale classes at relatively lower resolutions can be safely 

assumed, it represents an important limitation of classifying to the species level in that there is an 

inherent bias to large, more dominant species (Roth et al., 2015). This bias likely contributed to a 

reduction of the spectral variation between classes in the GIS data. Of the species that were able to 

be identified most, if not all, were shared between the other communities to a varying degree. This 

small change in microclimate or other micro-environmental conditions may result in increased 

within-class spectral variability (Klosterman et al., 2018) 

Detection of rare species is possible via the modelling of its known ecological niche. de Siqueira et 

al. (2009) used 16 different rasters to model the environmental conditions from a single occurrence 

of a rare Brazilian plant species that was thought to be locally extinct. Using these data, the authors 

were able to isolate a range of sites with matching environmental conditions, at which they were 

able to locate previously unknown populations of the species in question at five of the nine sites 

identified. These models, however, were of the entire state of Sao Paulo, Brazil. Replicating fine-

scale environmental modelling of a site such as Kaitorete Spit would be currently unfeasible, as for 

the most part, these data do not yet exist. Structural information of the dunes could be created via 

SFM techniques that could help in environmental modelling. 

Rare species that assist in the differentiation of certain ecological communities 
were either not encountered or could not accurately be described via remote 
sensing  

L. ferocissimum, M. alpinus and P. prostrata are examples of locally rare species that were identified 

as significant indicators in the field data yet were not identified via GIS. Unlike the aforementioned 

species with sub-pixel spatial extents, these species can grow to relatively large sizes. Their naturally 

sparse densities combined with an ineffective GIS sampling methodology likely resulted in their non-

detection when image classification training was being conducted. Of the few individuals that were 

seen in the field, there were too few observations from which to build a training sample of sufficient 

spatial and spectral resolution. M. alpinus was also likely confused for M. complexa in the imagery, 

as both species share a very similar growth form and foliage colour.  

Observer bias and the difference in observer skill in the detection of low-density populations has 

been shown to significantly affect the reliability of data from the field (Bergstedt et al., 2009; 

Fitzpatrick, Preisser, Ellison, & Elkinton, 2009; Trevithick, Muir, & Denham, 2012; Vittoz & Guisan, 
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2007) and remote sensing based surveys (Cagney, Cox, & Booth, 2011; Frederick, Hylton, Heath, & 

Ruane, 2003). In Zweig et al. (2015) the authors explicitly state: “expert knowledge was critical to 

producing our classification, both in terms of on the ground and remote sensing knowledge”. For 

this study, the ability to discern image objects with any level of confidence was a combination of 

image quality and my own knowledge of the plant communities of the dune system itself.  

4.2 Factors in the final results 

4.2.1 Overall accuracy 

The overall accuracy of the classification has a significant influence on the reliability of the data and 

the strength of any ecological conclusions. For the sake of simplifying the discussion, the Kappa 

coefficient will be used for comparisons between studies whereas the user’s accuracy will be used 

to discuss the implications of different accuracies of the classes that exist within this study. An 

explanation of the two measures can be found in Section 3.2.2. The Kappa coefficient is a widely 

used metric that describes the overall relationship between the classification and the associated 

reference data. The use of the Kappa coefficient allows for the direct comparison between different 

classifications (Congalton & Green, 2008). The Users’ accuracy is the more useful measure of 

individual class accuracy to land managers (Underwood et al., 2007) as it is a measure of how reliable 

the map or classified image is in relation to what it actually on the ground (Story & Congalton, 1986). 

In this study, point and area-based accuracy measures were used. Point-based accuracy measures 

found the highest Kappa (69.73%) and overall/total (72.48%) accuracies, whereas area based 

accuracy was significantly lower (35.61% and 49.30% for the Kappa Coefficient and Overall/Total 

Accuracy, respectively). Based on the standard proposed by Landis and Koch (1977), these results 

range from “fair” for the area assessment to “substantial” for the point assessment. These ranges 

put the results in line with recent similar studies. Zweig et al. (2015) achieved an overall accuracy of 

69% with a Kappa coefficient of 0.65, as measured by point-based accuracy for nine vegetation 

classes at 0.5 m resolution. Fraser, Olthof, Lantz, and Schmitt (2016) used 0.1 m RGB imagery to 

classify arctic shrubland with an accuracy of 72% (overall/total accuracy) using point-based accuracy. 

(Chabot et al., 2017) used 0.05 m multiband imagery to classify broad-scale vegetation dynamics 

with an overall accuracy of 78% and a Kappa coefficient of 0.61 using point-based accuracy. Chabot 

et al. (2018) achieved accuracies ranging from 84% - 92% (overall/total) and 75% - 88% (Kappa 

coefficient) when using ~13 0.13 multispectral (including red-edge) imagery and 0.04 RGB imagery. 

The accuracy of key indicator species 

The strength of any ecological conclusion that are drawn from remote sensing data are heavily 

dependent on the specific accuracies of the data themselves. As such, these measures of evaluation 
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should be made available to users for objective verification before deciding if and how the end 

products can be used (Xie et al., 2008). While a direct measure of classification accuracy is of some 

value, they do not show how well a classified image or map may relate to that landscape’s structure 

and function (Lunetta & Lyon, 2004). By comparing the class-specific accuracy against the classes’ 

apparent relevance to a sites community analysis, we can derive a basic idea of the suitability of any 

classification products derived from the data (Figure 24). For each cover class, the relevance of its 

accuracy will relate to whether its detection is important for direct monitoring of the species per se, 

or rather its value as an indicator species for monitoring coarse-scale habitats.  

Table 37 shows the specific class accuracies as measured by the User’s Accuracy. Of the 16 significant 

indicators for the plot level field data, only eight could be directly identified. The other eight were 

either not detected at all, or formed part of a mixed species class. Of the species that are of the 

highest ecological importance to Kaitorete Spit, only M. complexa showed an acceptable average 

Users’ accuracy. The highest average was of the mixed-grass species class, at 81%. While a significant 

indicator of a specific community, as discussed previously the ecological value of this cover class is 

of less importance relative to single species classes such as M. complexa. Of the most distinctive 

indicator species for each of the three clusters, only Bare Open Ground could be directly detected. 

With an indicator value of 0.88, its accuracy of 68% relative to the other classes would make for a 

relatively confident identification. F. spiralis, which was the cover class of the highest ecological 

value in this cluster only achieved an average Users accuracy of 57%. Using point based methods 

rather than the average however shows an accuracy of 98%, the highest overall accuracy rating for 

all classes.  

The areas-based accuracies are lower for every class compared to the point-based measures. As 

mentioned in section 2.3.2 the points used in the accuracy assessment were all manually selected. 

Point-based accuracy works well with high-resolution data, as a definitive point with small spatial 

extent is less likely to exhibit more than one vegetation type at the sub-pixel level (Xie et al., 2008). 

Manual selection of points, however, does introduce selection bias, in that I was more likely to select 

points that they have the highest relative confidence in identifying. This is in direct contrast for the 

methods used in the area-based assessments for this study. The areas were randomly placed and 

the cover classes within were manually classified by drawing a bounding polygon around each class. 

While the knowledge and skills surrounding my ability to identify cover types was the same for each 

method, issues in the identification of mixed cover and boundary pixels were apparent. When 

delineating cover classes at this resolution, defining individual plant or class boundaries was difficult 

(Figure 25). High-resolution imagery comes with finer class boundaries and a subsequent increased 

need for accurate boundary definition (Underwood et al., 2007). The mixed species ground cover 

and its highly variable distribution and density would have also resulted in high within-class spectral 
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variation. F. spiralis, C. appressa and P. esculentum all showed large differences between the point 

and area-based assessments. For F. spiralis and C. appressa, this may be due to their low-density 

growth forms. When designating image object boundaries for these species, the fine-scale variations 

in the presence of open ground or other cover types that exist at the boundaries would have been 

undoubtedly included. For P. esculentum rather, the high density of its growth form and the high-

occurrence of standing dead biomass would have significantly increased the within-class variation 

for the cover class.  

 

Figure 24. Significant indicator species from plot-based field community and User's accuracy based 
on point assessment, area assessment and the average of the two methods.  
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Figure 25. Designation of the boundaries between perceived image cover classes was challenging. 

Table 37 Significant indicator species from plot-based field community data with the User’s accuracy 
for each class from the point and area-based accuracy assessment, and the average of 
the two measures. When the cover class was not detected directly via UAS image 
classification, the total average accuracy of all classes was used as indicated by *. 

Cluster Ground Cover Class 
Indicator 
value 

Users Accuracy - 
point  

Users Accuracy - 
area 

User Accuracy 
- Average 

1 

Bare Open Ground 0.8783 74.00% 62.45% 68.23% 

Dead F. spiralis 0.6674 64.33% 23.66% 44.00% 

F. spiralis 0.5367 98.33% 15.89% 57.11% 

Coarse Woody 
Debris* 0.3358 72.48%* 31.16%* 51.82%* 

A. arenaria* 0.0521 72.48%* 31.16%* 51.82%* 

2 

Forbs* 0.7097 72.48%* 31.16%* 51.82%* 

Grasses 0.5881 89.00% 73.62% 81.31% 

Bryophytes* 0.5874 72.48%* 31.16%* 51.82%* 

Lichens* 0.3887 72.48%* 31.16%* 51.82%* 

P. cita* 0.315 72.48%* 31.16%* 51.82%* 

C. appressa 0.2966 74.00% 19.62% 46.81% 

M. complexa 0.2353 82.33% 63.84% 73.09% 

R. australis 0.1899 63.33% 25.24% 44.29% 

3 
Dead P. esculentum* 0.9349 72.48%* 31.16%* 51.82%* 

P. esculentum 0.9183 64.33% 4.22% 34.28% 
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Dead Standing 
Biomass* 0.7402 72.48%* 31.16%* 51.82%* 

 

4.2.2 Factors affecting accuracy 

The main sources of error for the image classification results in this study came from errors in the 

methodology of data collection and processing. Issues with the initial UAS image data quality and 

the post-processing steps carried out in an attempt to rectify them were outlined in section 2.3.1. In 

the following section a more detailed discussion of the sources and implications of these errors. 

Image quality 

Upon first assessment of the imagery, distinct spectral and spatial distortion of the data were 

apparent. Spectral distortion (spectral accuracy) can include variation in image colour, contrast and 

brightness. Many factors can contribute towards spectral error, such as atmospheric effects, the 

perspective and positioning (e.g. altitude and velocity) of the sensor optics, the degree of motion 

and stability of the sensor and sensor platform, and terrain relief (Conlin et al., 2018). Spatial 

distortion (spatial accuracy) refers to the degree of accuracy in the exact positioning of pixels in an 

image. 

Many of the data quality issues may be related to the methodologies involved in the image capture. 

Two separate capture events at Kaitorete Spit were used in order to maximise the spatial coverage 

of the limited amount of GCPs that were available for use. The eastern side was flown first with 

relatively optimal GCP coverage. The western side was flown later in the day and without proper 

GCP coverage. In remote sensing, GCPs are of particular importance in UAS studies, as the onboard 

GPS positioning systems of UAS compared to other systems is of relatively poor accuracy (Duffy et 

al., 2018). The decision to split the site into the two flights to maximise GCP coverage was due to the 

significant gains in accuracy from using a higher density of GCPs (Agüera-Vega, Carvajal-Ramírez, & 

Martínez-Carricondo, 2017). However, proper GCP coverage i.e. complete and stratified distribution 

has been shown to be important for increasing the accuracy of UAS imagery (K. L. Cook, 2017; 

Martinez-Carricondo et al., 2018). It should be noted that the decision to fly the second half of the 

flights without proper GCP coverage was the professional decision of Hawkeye UAV. Proof of this 

was conveniently captured via a RQ-84Z Photogrammetry UAS by Hawkeye UAV at around 200 m 

above sea level (Figure 26).  

The split capture events and lack of proper GCP coverage likely significantly contributed to the 

amount of spectral and spatial distortion. Timing image capture events to be as close as possible is 

important for minimising the amount of spectral variability from changes in the environmental 
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conditions (Duffy et al., 2018). For example the amount of wind, the presence of water in the 

atmosphere or as water-based surfaces, and the position of the sun as a degree of showing and light 

intensity can all affect accuracy in remote sensing (Aber, Marzolff, & Ries, 2010; Husson et al., 2016). 

Duffy et al. (2018) state that the complex winds that come about from differences in land and sea 

temperature should be strongly considered when operating UAS in coastal areas.  

The difference in image appearance and quality between the western and eastern halves of the 

images is present in both the RGB and NIR imagery. For the RGB images, the eastern side is marred 

by multiple areas of image warping, distinct changes in image contrast, as well as issues with 

incomplete data coverage. The western side does not display such significant errors in image 

distortion, although issues of spectral distortion in the form of image ‘banding’ from differences in 

contrast in colour do exist. Alterations to the UAS between the two sides resulted in a slight 

shadowing on the western imagery due to the positioning of the camera on the mount. The issues 

of image warp and tearing most likely came from incomplete coverage of GCPs. Any pre-processing 

georeferencing would have resulted in larger shifts in image data around the physical GCPs, whereas 

areas where the data were georeferenced against the point cloud likely received a smoother, yet 

less spatially accurate translation.  
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Figure 26. GCPs (A) on the back of a quad bike and in the process of being laid out by the author (B). 

Spectral variation and classification training data  

Where possible, the training data used for the classifications followed the recommended 

methodologies from Foody et al. (2006). The aforementioned spectral discrepancies, as well as the 

relatively large area of the study, meant that creating a truly representative sample was quite 

challenging. The aim of classification training is to create the smallest possible training sample that 

accurately represents a cover class yet also minimises the with-in class spectral variation. Over such 

a large area, there likely exists cover classes or species that were present yet either not detected in 

the imagery (see section 4.1.3), or not detected in both the field and remote sensing data. When in 

situations such as this where the object(s) of interest are individual species rather than broad 

community types, traditional supervised techniques may be of limited use (Foody et al., 2006), as 

these techniques assume that the set of classes within the images have been comprehensively 

defined (Congalton & Green, 2008). Poorly defined classes or even those not defined at all, can lead 

to substantial classification errors in the resultant products (G. Foody, 2002).  

The less-than-satisfactory geopositioning errors in the imagery would have more than likely 

significantly affected the accuracy of the classifications. The separate capture of the NIR and RGB 

imagery using two different sensors also resulted in the two data sets not displaying a direct pixel-

to-pixel spatial overlay. The two datasets were processed independently, in that different image 

spectral and spatial translations were applied to each dataset; subsequently, errors in one dataset 

did not occur in the other. While a reduction in total error may seem like a desirable goal, unless an 

exact match between the NIR and RGB data is achieved, the resulting data will have higher spectral 

variation within image pixel or object class. This error was likely further exacerbated by the choice 

of georeferencing translation used in the current study. Spline transformations are known as an 

example of a ‘rubber sheeting’ method, in that they do not apply an equal shift to every pixel. 

Transformation or movement of pixels is higher in areas in close proximity to GCPs, and less so, for 

areas further away; this allows for a higher degree of local spatial accuracy at the cost of a higher 

spectral discrepancy in other areas. The different effects of, and methods for correcting various 

geospatial errors can be found in (Aspinall, Marcus, & Boardman, 2002), however spatial 

discrepancies between image objects and known validation points are a significant source of 

classification errors (Underwood et al., 2007).  

4.2.3 Techniques to improve accuracy 

Fuzzy clustering is a classification technique that assigns a probability that a given pixel or object 

belongs to any given class (Zadeh, 1965). Fuzzy clustering has been shown to be effective in areas of 

high heterogeneity, where broad classes and coarse-scale pixels can show high within class spectral 
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variation (Rapinel et al., 2018). Amiri, Solaimani, and Miryaghoubzadeh (2013) found that Fuzzy 

Classification was useful in areas with gradual or fine-scale differences between community types. 

When compared to MLC, Fuzzy Clustering has been shown to be more accurate (Wang, 1990) and 

have faster processing times (Amiri et al., 2013). Foody (1996) states that Fuzzy Classifications may 

enable a more realistic representation of land and vegetation cover. Such techniques may be of use 

for monitoring of Kaitorete Spit as its vegetation communities are characterised by fine-scale 

features and changes within a highly heterogeneous environment.  

Many examples of the use of additional environmental data such as topography to aid in vegetation 

classification exist in the recent literature. Baena et al. (2017) used UAS multispectral data and 

photogrammetric point clouds to achieve an overall classification accuracy of 94.10%. The study, 

however, was in low-density Peruvian dry forest, and clear delineation of trees was easily achieved. 

When used for monitoring smaller vegetation at mixed densities, the accuracies of photogrammetric 

point clouds can be reduced. K. L. Cook (2017) used a low-cost UAS to study the structure of the 

Daan River gorge in Taiwan. The author found that when in low-densities, grasses and shrubs could 

not be detected by SFM techniques. High-density vegetation presented another issue, however, in 

that the SFM methods were returning points from below the canopy yet above the ground. The 

detection of small-scale variation in surfaces could be improved by increasing image sampling, 

however, this significantly increases processing time and the noise within the resulting point cloud. 

Conlin et al. (2018) assessed multiple different UAS and remote sensing techniques in modelling the 

structural components of coastal dune systems. The authors conclude that an increase in spatial 

resolution would have likely increased the ability of the SFM techniques to distinguish image 

features. Strong evidence for this comes from Fraser et al. (2016), who used extremely high spatial 

resolution RGB imagery (0.0075 m) of artic scrublands to generate a point cloud that was capable of 

detecting a change in vegetation height of between 10 cm and 30 cm. In Conlin et al. (2018), the 

structural complexity of dunes and spatial variation in vegetation density and height resulted in 

reduced accuracy of SFM surface models. This was due to the need for an increase flight height for 

capturing accurate dune imagery, and lack of existing methodologies for accurately determining 

individual vegetation heights.  

The benefits and advantages of hyperspectral data in remote sensing are both well known and 

widely available in the scientific literature and such will not be discussed at length in comparison to 

the present study. As a brief overview however: hyperspectral data allows for single-species 

mapping in a multispecies environment (Neumann, Itzerott, Weiss, Kleinschmit, & Schmidtlein, 

2016), and therefore could be of use for delineating those species indicative of the dune hollows and 

other fine-scale habitat features at Kaitorete. Increased spectral resolution also aids in the 

differentiation of invasive species (He et al., 2011; Mullerova, Pergl, & Pysek, 2013; Skowronek et 
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al., 2017), especially so when they have distinct phenological stages (Ouyang et al., 2013). Using 

hyperspectral data, more informative studies of specific species can be conducted, such as 

differentiating between plant age (Knox et al., 2013) and successional/reproductive stage (Carvalho 

et al., 2013). These methodologies could potentially be of use for fine-scale monitoring of 

community health, particularly in regards to recovery from disturbance events, or to ascertain 

information regarding population age structure.  

4.3 Conclusions and recommendations 

This thesis research sought to evaluate the use of UAS based remote sensing imagery for the 

monitoring and management of the coastal dune plant communities at Kaitorete Spit. UAS derived, 

high resolution, multi-spectral imagery was collected, processed and classified into 12 different 

major cover classes at, for the most part, the individual species level. These data were then used in 

a study of the plant communities at the site, from which distinct ecological zones were able to be 

distinguished.  Field-based studies of plant community composition were undertaken and then used 

as a direct comparison to the GIS-based data in a somewhat second-order ground-truthing of the 

data.  

The suitability and applicability of the results of this study towards the monitoring of the dunes at 

Kaitorete Spit are somewhat mixed. The dune environment and the communities that lay within this 

area are structurally and ecologically complex as well as  diverse. For effective management of such 

a site, the scale and type of ecological management and monitoring needs to change with the natural 

scale of those systems and key components to be studied.  The main conclusions of this study are as 

follows: 

The specific methodologies of this study resulted in a generalised measure of the plant communities, 

with an ability to correctly identify some, but not all, key species. The ability to directly monitor 

species, such as pīngao, M. complexa and C. appressa,provides a valuable conservation tool in and 

of itself, but also allows for the potential indirect monitoring of the types and amount of habitat 

available for other species living at the site, such as native lizards and invertebrates. 

Monitoring invasive species, such asL. arboreus was also possible, however, the specific 

management practices in use at Kaitorete Spit likely affected its overall detectability.  

The UAS data were not able to detect fine-scale community compositional changes and 

features with any acceptable form of accuracy. The high heterogeneity of the landscape features of 

Kaitorete Spit provide some of the most valuable outcomes in terms of biodiversity. This 

complexity, however, makes the detection and modelling of these key habitats challenging via UAS 

imagery based on the methods used in this study.  
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There were significant sources of error in the final classifications and subsequent comparisons of the 

GIS and field data: 

A lack of proper GCPs during image acquisition meant there was poor confidence in final geospatial 

positioning.  

Using two separate capture events resulted in significant spectral discrepancies within and between 

the two halves of the site. 

Using two separate sensors for the capture of the NIR and RGB data, in combination with the 

geospatial issues, resulted in significant and independent spectral distortion and a lack of an 

acceptable overlay between the two data types. This resulted in a significantly large within-class 

spectral variation that likely reduced classification accuracies.  

Issues with the specific GPS unit used in the field data acquisition meant that the field sites could 

not be accurately located, reducing the strength of the comparisons between it and the GIS 

community data.  

Based on these results and the data available with the methodologies used in this thesis, the 

following recommendations are made: 

Due to the spectral distortions and discrepancies of the NIR imagery, these should be excluded from 

use in any image classifications based on these data.  

Fuzzy classification methods may be more suitable for use with the spatial and spectral resolutions 

used in this study. These may prove to be more suited for the highly complex vegetation 

environments that dominate the dunes.  

If this study were to be repeated, then the design of the field sampling should be altered to better 

reflect those of previous studies of the vegetation at Kaitorete Spit. The sampling sizes used in this 

study were more effective over a larger area; therefore increasing sampling coverages will l ikely 

increase the ability to discern meaningful community results for comparison.  The size of the GIS 

sampling window can be changed to match any that can be done in the field.  

If further studies of the application of UAS in the monitoring of the dunes at Kaitorete Spit are to be 

carried out, then the following recommendations are made: 

The collection of UAS imagery should be treated like any other method of ecological data acquisition 

in that they should be tailored to specific conservation and management goals. 
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Methods to increase the spatial resolution of the data should be employed to enable detection of 

the various fine-scale habitat features. 

In summary, the main benefits of these data are dependent of the different conservation and 

management needs of those who are responsible for the long-term management of the site. Aerial 

imagery is of most use to those who have intrinsic knowledge of the site. In many other studies, 

expert knowledge was key in the successful collection and implementation of aerial data. These data 

are in no way a replacement for field-based monitoring efforts, but rather serve best to augment 

the management practices instead. UAS can provide a new type of data that should be integrated 

into traditional methods. This is because while we can provide using this technology data at smaller 

and smaller scales, these may not always be of use. The cost-benefit ratio of these sources of data 

should be considered before they are widely applied to a range of habitats and ecosystems.   

Lastly, the results of this study also support the need for more interdisciplinary communication 

between ecologists and remote sensing professionals. In this study, field-based questions were 

applied to digitally sourced data, without much consideration for how well they would translate 

between the two. That being said, more studies such as these are crucial if we are to further our 

understanding of UAS as a tool for fine-scale ecological monitoring.  
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Appendix A 

 

A.1 Georeferecing  

Table A. 1 Spline Link table for final georeferencing operation 

X1 Y1 X2 Y2 

1568108 5146753 1568113 5146753 

1566003 5146576 1566008 5146575 

1566846 5147277 1566853 5147276 

1567160 5147261 1567165 5147260 

1567547 5146958 1567552 5146957 

1566866 5146663 1566871 5146662 

1565403 5146899 1565408 5146899 

1563419 5146373 1563424 5146373 

1565582 5146940 1565586 5146940 

1566743 5147025 1566749 5147024 

1566554 5146812 1566558 5146811 

1565335 5146472 1565339 5146472 

1565244 5146606 1565248 5146604 

1566171 5147047 1566176 5147046 

1565063 5146370 1565066 5146370 

1564757 5146557 1564763 5146556 

1564498 5146182 1564503 5146184 

1564231 5146463 1564238 5146463 

1564712 5146311 1564716 5146312 

1564611 5146440 1564616 5146440 

1564478 5146504 1564484 5146504 

1564459 5146527 1564465 5146526 

1568074 5146784 1568079 5146784 

1568121 5146924 1568126 5146923 

1568064 5146913 1568069 5146913 

1567877 5147098 1567882 5147097 

1567902 5147122 1567908 5147121 

1567800 5147199 1567805 5147197 

1565631 5146521 1565636 5146520 

1565665 5146449 1565669 5146447 

1565544 5146478 1565548 5146476 

1565461 5146627 1565465 5146626 

1565430 5146650 1565434 5146649 

1565438 5146731 1565443 5146730 

1565191 5146695 1565197 5146695 

1565124 5146588 1565129 5146587 

1563634 5146324 1563641 5146325 
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1563663 5146443 1563671 5146445 

1563480 5146346 1563486 5146345 

1563427 5146314 1563432 5146314 

1563447 5146251 1563453 5146252 

1563381 5146229 1563386 5146231 

1563238 5146131 1563245 5146129 

1563137 5146118 1563144 5146116 

1562946 5146000 1562953 5145998 

1562346 5146108 1562351 5146107 

1562254 5146101 1562259 5146100 

1563963 5146183 1563971 5146185 

1563945 5146188 1563953 5146189 

1563911 5146116 1563919 5146118 

1563820 5146355 1563828 5146355 

1563910 5146438 1563917 5146439 

1563993 5146539 1564001 5146538 

1564083 5146560 1564090 5146559 

1564241 5146595 1564248 5146595 

1564750 5146731 1564755 5146729 

1564653 5146703 1564659 5146702 

1564457 5146652 1564464 5146651 

1564381 5146613 1564388 5146613 

1564144 5146548 1564149 5146547 

1564293 5146288 1564299 5146289 

1564213 5146267 1564220 5146269 

1564190 5146298 1564197 5146300 

1563689 5146302 1563697 5146302 

1563660 5146274 1563668 5146275 

1563291 5145975 1563299 5145974 

1563348 5146005 1563356 5146005 

1562585 5145932 1562590 5145929 

1562549 5145901 1562553 5145899 

1562556 5145906 1562561 5145903 

1562554 5145896 1562559 5145894 

1562439 5145881 1562443 5145879 

1562291 5145900 1562295 5145899 

1562829 5146200 1562835 5146201 

1562788 5146183 1562794 5146181 

1562774 5146191 1562781 5146189 

1562650 5146144 1562656 5146141 

1562575 5146150 1562582 5146151 

1562501 5146093 1562507 5146090 

1563351 5146641 1563354 5146639 

1563248 5146579 1563252 5146576 

1561932 5145729 1561935 5145730 

1561925 5145792 1561930 5145792 
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1561884 5145770 1561888 5145772 

1561764 5145722 1561769 5145725 

1561782 5145838 1561789 5145836 

1561712 5145875 1561717 5145877 

1561823 5145842 1561827 5145844 

1562067 5146048 1562071 5146047 

1562192 5146081 1562197 5146079 

1567989 5146757 1567994 5146756 

1568770 5146899 1568773 5146902 

1568547 5147432 1568550 5147431 

1568092 5147245 1568097 5147244 

1568324 5147099 1568329 5147099 

1566003 5146846 1566008 5146844 

1566001 5146852 1566006 5146849 

1565934 5146714 1565939 5146712 

1563619 5146074 1563627 5146074 

1563609 5146125 1563616 5146126 

1563624 5146271 1563631 5146271 

1566398 5146700 1566402 5146698 

1565613 5146825 1565619 5146823 

1565549 5146903 1565555 5146901 

1564012 5146553 1564020 5146552 

1563718 5146709 1563725 5146710 

1566271 5147113 1566275 5147111 

1566268 5147168 1566272 5147167 

1566440 5146927 1566444 5146926 

1568493 5146978 1568497 5146979 

1568324 5146890 1568329 5146891 

1568287 5146871 1568292 5146872 

1568235 5146872 1568239 5146872 

1568735 5147240 1568739 5147241 

1568482 5146917 1568486 5146920 

1568489 5146865 1568493 5146868 

1568415 5146830 1568420 5146833 

1568152 5147009 1568157 5147009 

1568197 5147067 1568201 5147067 

1567339 5146715 1567344 5146715 

1567242 5147100 1567246 5147099 

1562282 5146439 1562287 5146437 

1562293 5146458 1562298 5146456 

1562295 5146454 1562300 5146452 

1562620 5146526 1562627 5146522 

1562789 5146537 1562797 5146532 

1562796 5146539 1562803 5146534 

1562893 5146527 1562900 5146523 

1563168 5146652 1563173 5146647 
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1563301 5146689 1563304 5146684 

1563494 5146602 1563499 5146601 

1563526 5146432 1563532 5146432 

1562853 5146100 1562860 5146098 

1562969 5146099 1562976 5146097 

1563095 5146025 1563102 5146023 

1563168 5146280 1563174 5146278 

1562962 5146267 1562968 5146264 

1561984 5145780 1561988 5145781 

1561978 5145778 1561982 5145779 

1561963 5145772 1561966 5145773 

1561998 5145786 1562002 5145787 

1561779 5145752 1561783 5145755 

1561882 5145820 1561886 5145821 

1561952 5145823 1561956 5145824 

1562016 5145855 1562020 5145855 

1562002 5145914 1562006 5145915 

1561823 5145999 1561828 5145999 

1561940 5146292 1561946 5146289 

1563050 5145943 1563057 5145941 

1563079 5145954 1563085 5145952 

1563110 5145965 1563116 5145963 

1563135 5145944 1563142 5145943 

1563194 5146035 1563201 5146033 

1563188 5146040 1563195 5146038 

1563199 5145988 1563206 5145987 

1562718 5146066 1562724 5146063 

1562692 5146047 1562698 5146044 

1562244 5145836 1562247 5145834 

1562215 5145818 1562218 5145817 

1562382 5145833 1562386 5145831 

1562319 5145806 1562322 5145804 

1562093 5145768 1562097 5145769 

1562087 5145772 1562091 5145772 

1562422 5145824 1562426 5145821 

1562957 5145935 1562963 5145933 

1562857 5145961 1562863 5145959 

1562861 5145962 1562867 5145959 

1562908 5145915 1562914 5145912 

1566568 5146582 1566573 5146582 

1566546 5146579 1566550 5146578 

1566467 5146636 1566471 5146636 

1566392 5146597 1566397 5146596 

1566254 5146580 1566258 5146579 

1566176 5146595 1566180 5146594 

1565742 5146671 1565747 5146669 
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1565748 5146978 1565755 5146974 

1567202 5146832 1567208 5146831 

1567759 5146781 1567763 5146781 

1567386 5146784 1567392 5146784 

1567918 5146855 1567922 5146855 

1567915 5146779 1567919 5146779 

1567604 5146705 1567609 5146706 

1567622 5146692 1567627 5146693 

1567717 5146711 1567721 5146712 

1567776 5146728 1567779 5146729 

1567790 5146723 1567794 5146724 

1567810 5146733 1567814 5146734 

1567840 5146771 1567843 5146771 

1567601 5146863 1567606 5146863 

1567591 5146855 1567596 5146856 

1567922 5146738 1567926 5146739 

1567958 5146798 1567962 5146798 

1567985 5146830 1567989 5146830 

1568013 5146845 1568017 5146845 

1568070 5146845 1568074 5146844 

1567143 5146649 1567148 5146649 

1567059 5146635 1567065 5146635 

1566976 5146670 1566981 5146670 

1566900 5146656 1566905 5146655 

1566899 5146685 1566904 5146684 

1566691 5146707 1566696 5146706 

1566689 5146652 1566693 5146651 

1566692 5146660 1566696 5146659 

1566951 5146961 1566957 5146960 

1566914 5146978 1566920 5146977 

1566930 5146847 1566936 5146846 

1566919 5146842 1566925 5146840 

1564842 5146383 1564846 5146383 

1565274 5146407 1565277 5146407 

1565221 5146387 1565225 5146387 

1565093 5146375 1565097 5146375 

1564608 5146344 1564612 5146345 

1564530 5146336 1564534 5146338 

1564398 5146290 1564403 5146292 

1564334 5146216 1564340 5146218 

1564343 5146194 1564349 5146197 

1564134 5146132 1564142 5146135 

1564199 5146144 1564206 5146147 

1564220 5146157 1564227 5146159 

1564279 5146153 1564286 5146156 

1563474 5145999 1563482 5145999 
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1563364 5146132 1563370 5146131 

1563510 5146142 1563517 5146142 

1563787 5146118 1563795 5146119 

1563728 5146181 1563735 5146182 

1564378 5146501 1564384 5146500 

1564891 5146263 1564894 5146263 

1564857 5146254 1564861 5146255 

1564564 5146263 1564568 5146265 

1564476 5146255 1564481 5146257 

1563733 5146058 1563741 5146059 

1564171 5146359 1564178 5146359 

1563431 5146167 1563438 5146166 

1561885 5146215 1561891 5146213 

1562698 5145877 1562703 5145874 

1562739 5145890 1562744 5145887 

1562787 5145903 1562793 5145900 

1562784 5145908 1562790 5145905 

1562610 5145859 1562615 5145856 

1562593 5145869 1562598 5145866 

1562669 5145892 1562674 5145889 

1562508 5145857 1562512 5145854 

1562342 5145945 1562346 5145943 

1562239 5146023 1562243 5146020 

1562316 5146041 1562321 5146038 

1562163 5145956 1562167 5145954 

1562524 5145953 1562529 5145950 

1562887 5146017 1562893 5146014 

1563387 5145982 1563395 5145981 

1563423 5145979 1563431 5145979 

1563461 5146079 1563469 5146079 

1566231 5146494 1566236 5146493 

1566254 5146499 1566258 5146499 

1566133 5146534 1566137 5146533 

1566091 5146574 1566095 5146572 

1566130 5146587 1566134 5146585 

1566164 5146631 1566168 5146629 

1566203 5146651 1566207 5146649 

1566055 5146690 1566059 5146687 

1565842 5146530 1565847 5146528 

1565448 5146352 1565450 5146350 

1565959 5146453 1565964 5146452 

1566023 5146451 1566028 5146450 

1566108 5146638 1566113 5146636 

1566088 5146664 1566092 5146661 

1567792 5147314 1567797 5147312 

1568105 5147162 1568110 5147161 
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1567770 5146769 1567774 5146769 

1567346 5146829 1567351 5146829 

1567307 5146820 1567312 5146819 

1567249 5146796 1567255 5146795 

1567161 5146762 1567167 5146761 

1565589 5146442 1565593 5146440 

1565226 5146550 1565230 5146549 

1565002 5146470 1565006 5146469 

 

A.2 Convolution Functions 

Table A. 2 ‘Smoothing 3x3’ filter kernel 

 C0 C1 C2 

R0 1 2 1 

R1 2 4 2 

R3 1 2 1 

Table A. 3 ‘Sharpen 3x3’ filter kernel 

 C0 C1 C2 

R0 -1 -1 -1 

R1 -1 9 -1 

R3 -1 -1 -1 

Table A. 4 ‘Laplacian 3x3’ filter kernel 

 C0 C1 C2 

R0 0 -1 0 

R1 -1 4 -1 

R3 0 -1 0 

Table A. 5 ‘Sobel Horizontal 3x3’ filter kernel 

 C0 C1 C2 

R0 -1 -2 1 

R1 0 0 0 

R3 1 2 1 

Table A. 6 ‘Sobel Vertical 3x3’ filter kernel 

 C0 C1 C2 

R0 -1 0 1 

R1 -2 0 2 

R3 -1 0 1 
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A.3 Classification results 

Table A. 7 Point based accuracy confusion matix of classification results. Green cells indicate 
correctly classified pixels. 1 = L. arboreus, 2 = M. complexa, 3 = P. radiata, 4 = Dead P. 
radiata, 5 = F. spiralis, 6 = Dead F. spiralis, 7 = Bare Open Ground, 8= Grasses, 9 = C. 
appressa, 10 = R. australis, 11 = P. esculentum  

 Classified Image 

Ground Truth 1 2 3 4 5 6 7 8 9 10 11 Grand Total 

1 104 22  6  1 24 24 33 6 80 300 

2 2 247 6  4 4  1   36 300 

3  60 205   1 10  23  1 300 

4    254  24 1 14 7   300 

5  1   295  1 2 1   300 

6  24 3 34  193 1 45    300 

7    16  2 222 60    300 

8  3  4 12 10 3 267  1  300 

9 55 5   6   4 222  8 300 

10 34   21  16 38   190 1 300 

11  52 3 4 1 8  5 34  193 300 

Grand Total 195 414 217 339 318 259 300 422 320 197 319 3300 

 

Table A. 8 Area based accuracy confusion matix of classification results. Green cells indicate correctly 
classified pixels. 1 = L. arboreus, 2 = M. complexa, 3 = P. radiata, 4 = Dead P. radiata, 5 
= F. spiralis, 6 = Dead F. spiralis, 7 = Bare Open Ground, 8= Grasses, 9 = C. appressa, 10 
= R. australis, 11 = P. esculentum 

 Classification Result  
Ground 
Truth 1 2 3 4 5 6 7 8 9 10 11 

Grand 
Total 

1 
160

9 5749  51 513 40 553 3845 
515

0 92 
304

7 20649 

2  9777 
15

5 108 790 545 117 3196 225  402 15315 

3  776 
39

5   12     63 1246 

4  944 3 782  2808 10 746   7 5300 

5  210  399 
245

7 753 6099 5377 140  25 15460 

6  358 20 760 14 1726 1273 3124 2 8 10 7295 

7  268  

200
6 26 2033 

4044
3 

1987
7 14 48 46 64761 

8  2228 4 938 
139

4 2188 3793 
3028

9 172 2 137 41145 

9 24 875  33 659 164 231 3804 
145

0 26 125 7391 

10    41  20 457 27  

18
4  729 

11  667  169  494  190   67 1587 



 90 

Grand 
Total 

163
3 

2185
2 

57
7 

528
7 

585
3 

1078
3 

5297
6 

7047
5 

715
3 

36
0 

392
9 180878 

 

Table A. 9. Accuracy assessment results from classification method testing across the three test sites. 

Image Classification Assessment 
type 

Measure Site 1 Site 2 Site 3 

RGBNIR+SR SVM Area Kappa 27.9% 26.3% 62.7% 

   Overall  43.2% 39.1% 76.4% 

  Point Kappa 77.6% 60.2% 83.0% 

   Overall  80.4% 64.6% 85.1% 

 MLC Area Kappa 49.4% 47.2% 58.0% 

   Overall  58.9% 61.7% 71.0% 

  Point Kappa 85.4% 52.1% 86.4% 

   Overall  87.3% 57.4% 88.1% 

 ISO Area Kappa 24.9% 28.1% 31.5% 

   Overall  28.4% 31.7% 29.9% 

  Point Kappa 30.0% 25.2% 30.7% 

   Overall  35.0% 32.8% 42.8% 

RGBNIR+NIR SVM Area Kappa 48.1% 41.8% 84.6% 

   Overall  58.0% 59.2% 86.5% 

  Point Kappa 77.6% 66.9% 83.0% 

   Overall  80.4% 70.4% 85.1% 

 MLC Area Kappa 48.7% 43.8% 55.4% 

   Overall  58.3% 58.4% 68.5% 

  Point Kappa 84.3% 76.1% 62.7% 

   Overall  86.3% 78.8% 76.4% 

 ISO Area Kappa 22.6% 18.8% 21.5% 

   Overall  26.8% 27.6% 25.2% 

  Point Kappa 24.1% 27.1% 33.0% 

   Overall  34.4% 30.1% 34.4% 

RGBNIR+SR+NDVI SVM Area Kappa 48.7% 47.6% 59.3% 

   Overall  58.4% 62.2% 72.4% 

  Point Kappa 7.1% 78.0% 86.6% 

   Overall  18.8% 80.4% 88.3% 

 MLC Area Kappa 50.5% 41.8% 62.7% 

   Overall  60.3% 59.2% 76.4% 

  Point Kappa 77.6% 68.1% 83.0% 

   Overall  80.4% 71.6% 85.1% 

 ISO Area Kappa 16.8% 25.0% 25.8% 

   Overall  20.6% 28.8% 27.5% 

  Point Kappa 27.4% 26.7% 19.4% 

   Overall  30.0% 31.7% 22.0% 

RGBNR SVM Area Kappa 48.9% 41.5% 49.9% 

   Overall  58.4% 55.4% 63.0% 

  Point Kappa 85.4% 79.0% 84.9% 
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   Overall  87.3% 81.3% 86.8% 

 MLC Area Kappa 77.6% 41.8% 62.7% 

   Overall  80.4% 59.2% 76.4% 

  Point Kappa 37.9% 68.1% 83.0% 

   Overall  48.7% 71.6% 85.1% 

 ISO Area Kappa 21.6% 18.5% 22.4% 

   Overall  24.5% 20.3% 24.1% 

  Point Kappa 21.7% 12.7% 29.4% 

   Overall  25.0% 17.3% 30.6% 

Table A. 10 Class specific classification accuracies from the point based accuracy measures. 

Class Comission Omission Users Accuracy  Producers Accuracy 

L. arboreus  100.51% 30.33% 34.67% 53.33% 

M. complexa 11.11% 55.67% 82.33% 59.66% 

P. radiata 43.78% 4.00% 68.33% 94.47% 

Dead P. radiata 13.57% 28.33% 84.67% 74.93% 

F. spiralis 1.57% 7.67% 98.33% 92.77% 

Dead F. spiralis 41.31% 22.00% 64.33% 74.52% 

Bare Open Ground 26.00% 48.33% 74.00% 74.00% 

Grasses 7.82% 51.67% 89.00% 63.27% 

C. appressa 24.38% 32.67% 74.00% 69.38% 

R. australis 55.84% 2.33% 63.33% 96.45% 

P. esculentum 33.54% 42.00% 64.33% 60.50% 

Average 32.68% 29.55% 72.48% 73.93% 

Max 100.51% 55.67% 98.33% 96.45% 

Min 1.57% 2.33% 34.67% 53.33% 

 

Table A. 11 Class specific classification accuracies from the area based accuracy measures. 

Class Comission Omission Producers Accuracy  Users Accuracy 

L. arboreus  92.21% 1.47% 98.53% 7.79% 

M. complexa 36.16% 55.26% 44.74% 63.84% 

P. radiata 68.30% 31.54% 68.46% 31.70% 

Dead P. radiata 85.25% 85.21% 14.79% 14.75% 

F. spiralis 84.11% 58.02% 41.98% 15.89% 

Dead F. spiralis 76.34% 83.99% 16.01% 23.66% 

Bare Open Ground 37.55% 11.44% 76.34% 62.45% 

Grasses 26.38% 57.02% 42.98% 73.62% 

C. appressa 80.38% 79.73% 20.27% 19.62% 

R. australis 74.76% 48.89% 51.11% 25.24% 

P. esculentum 95.78% 98.29% 1.71% 4.22% 
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A.4 TWINSPAN 

Table A. 12 Indicator Species Analysis results for the field data at the quadrat level 

 1 2 3 

A. arenaria  0.05 . . 

Bare Open Ground 0.88 0.06 . 

Bryophytes . 0.59 0.1 

C. appressa . 0.3 . 

Coarse Woody Debris 0.34 0.05 . 

Dead F. spiralis 0.67 . . 

Dead L. arboreus 0.07 . . 

Dead P. esculentum . . 0.93 

Dead Standing Biomass 0.16 0.06 0.74 

F. spiralis 0.54 . . 

Forbs 0.09 0.71 0.08 

Grasses 0.14 0.59 0.17 

Lichens 0.13 0.39 . 

L. arboreus 0.07 . . 

M. alpinus . 0.06 . 

M. complexa . 0.24 0.08 

P. cita . 0.32 . 

P. esculentum . . 0.92 

R. australis . 0.19 . 

 

Table A. 13 Indicator Species Analysis results for the field data at the plot level 

 1 2 3 

A. arenaria  0.06 . . 

Bare Open ground 0.73 0.12 0.08 

Bryophytes . 0.45 0.21 

C. appressa . 0.69 . 

Coarse Woody Debris 0.36 . 0.27 

Dead C. appressa . 0.14 . 

Dead F. spiralis 0.77 . . 

Dead L. arboreus 0.15 . 0.14 

Dead P. cita . 0.1 . 

Dead P. esculentum . . 0.99 

Dead R. australis 0.08 . . 

Dead Standing Biomass 0.26 . 0.69 

F. spiralis 0.73 . . 

Forbs 0.09 0.53 0.33 

Grasses 0.16 0.52 0.32 

Lichens 0.2 0.48 . 

L. arboreus 0.18 . 0.22 
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M. alpinus . 0.17 . 

M. complexa . 0.1 0.21 

P. prostrata . 0.11 . 

P. cita . 0.7 . 

P. esculentum . . 0.86 

R. australis . 0.42 . 

Table A. 14 Indicator Species Analysis results for the GIS 0.1 m data at the quadrat level 

 1 2 3 4 

C. appressa . 0.09 0.82 . 

Coarse Woody Debris 0.08 . . . 

Dead F. spiralis 0.14 . . . 

F. spiralis . . . 0.06 

Grasses 0.12 0.44 0.09 0.28 

L. arboreus  . . 0.71 . 

M. complexa . 0.06 0.3 0.57 

Bare Open Ground 0.67 . 0.12 . 

P. radiata . 0.59 0.16 . 

P. esculentum . . 0.65 0.07 

R. australis . 0.05 . 0.07 

Standing Dead Matter 0.19 . . 0.35 

 

Table A. 15 Indicator Species Analysis results for the GIS 0.1 m data at the plot level 

 
1 2 3 4 

C. appressa . 0.07 0.81 . 

Coarse Woody Debris 0.25 0.06 . . 

Dead F. spiralis . . . 0.95 

Grasses 0.2 0.37 0.37 0.05 

L. arboreus  . . 0.31 . 

M. complexa . 0.69 0.2 0.06 

Bare Open Ground 0.86 . 0.08 . 

P. radiata 0.12 . 0.77 . 

P. esculentum 0.1 0.28 0.25 0.1 

R. australis 0.13 0.14 . . 

Standing Dead Matter . 0.11 . 0.8 
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Gilabert, M. A., González-Piqueras, J., Garcıá-Haro, F. J., & Meliá, J. (2002). A generalized soil-
adjusted vegetation index. Remote Sensing of Environment, 82(2), 303-310. 
doi:https://doi.org/10.1016/S0034-4257(02)00048-2 

Gitelson, A., Garbuzov, G., Szilagyi, F., Mittenzwey, K., Karnieli, A., & Kaiser, A. (1993). Quantitative 
remote sensing methods for real-time monitoring of inland waters quality. International 
Journal of Remote Sensing, 14(7), 1269-1295.  

Gitelson, A. A., Kaufman, Y. J., & Merzlyak, M. N. (1996). Use of a green channel in remote sensing of 
global vegetation from EOS-MODIS. Remote Sensing of Environment, 58(3), 289-298.  

Gitelson, A. A., Keydan, G. P., & Merzlyak, M. N. (2006). Three-band model for noninvasive 
estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves. 
Geophysical Research Letters, 33(11). doi:doi:10.1029/2006GL026457 

Gonçalves, J., Henriques, R., Alves, P., Sousa-Silva, R., Monteiro, A. T., Lomba, Â., . . . Honrado, J. 
(2016). Evaluating an unmanned aerial vehicle-based approach for assessing habitat extent 
and condition in fine-scale early successional mountain mosaics. Applied Vegetation Science, 
19(1), 132-146. doi:doi:10.1111/avsc.12204 

Goncalves, J. A., & Henriques, R. (2015). UAV photogrammetry for topographic monitoring of coastal 
areas. Isprs Journal of Photogrammetry and Remote Sensing, 104, 101-111. 
doi:10.1016/j.isprsjprs.2015.02.009 

Gong, H. L., Jiao, C. C., Zhou, D. M., & Li, N. (2011). Scale issues of wetland classification and mapping 
using remote sensing images: A case of Honghe National Nature Reserve in Sanjiang Plain, 
Northeast China. Chinese Geographical Science, 21(2), 230-240. doi:10.1007/s11769-011-
0461-5 

Groom, G., Mücher, C., Ihse, M., & Wrbka, T. (2006). Remote sensing in landscape ecology: 
experiences and perspectives in a European context. Landscape Ecology, 21(3), 391-408.  

Guerschman, J. P., Hill, M. J., Renzullo, L. J., Barrett, D. J., Marks, A. S., & Botha, E. J. (2009). 
Estimating fractional cover of photosynthetic vegetation, non-photosynthetic vegetation and 
bare soil in the Australian tropical savanna region upscaling the EO-1 Hyperion and MODIS 
sensors. Remote Sensing of Environment, 113(5), 928-945.  

Guo, X. J., Shao, Q. Q., Li, Y. Z., Wang, Y. C., Wang, D. L., Liu, J. Y., . . . Yang, F. (2018). Application of 
UAV Remote Sensing for a Population Census of Large Wild Herbivores-Taking the Headwater 
Region of the Yellow River as an Example. Remote Sensing, 10(7). doi:10.3390/rs10071041 

Hall, R. K., Watkins, R. L., Heggem, D. T., Jones, K. B., Kaufmann, P. R., Moore, S. B., & Gregory, S. J. 
(2009). Quantifying structural physical habitat attributes using LIDAR and hyperspectral 
imagery. Environmental Monitoring and Assessment, 159(1-4), 63-83. doi:10.1007/s10661-
008-0613-y 

Hancock, S., Gaulton, R., & Danson, F. M. (2017). Angular Reflectance of Leaves With a Dual-
Wavelength Terrestrial Lidar and Its Implications for Leaf-Bark Separation and Leaf Moisture 
Estimation. Ieee Transactions on Geoscience and Remote Sensing, 55(6), 3084-3090. 
doi:10.1109/tgrs.2017.2652140 

He, K. S., Rocchini, D., Neteler, M., & Nagendra, H. (2011). Benefits of hyperspectral remote sensing 
for tracking plant invasions. Diversity and Distributions, 17(3), 381-392. doi:10.1111/j.1472-
4642.2011.00761.x 

Heinzel, J., & Huber, M. O. (2017). Detecting Tree Stems from Volumetric TLS Data in Forest 
Environments with Rich Understory. Remote Sensing, 9(1), 17. doi:10.3390/rs9010009 

Henning, J. G., & Radtke, P. J. (2006). Detailed stem measurements of standing trees from ground-
based scanning lidar. Forest Science, 52(1), 67-80.  

https://doi.org/10.1016/S0034-4257(02)00048-2


 100 

Hesp, P. (2002). Foredunes and blowouts: initiation, geomorphology and dynamics. Geomorphology, 
48, 245-268.  

Hill, M. (1979). 0.(1979): TWINSPAN—A FORTRAN program for arranging multivariate data in an 
ordered two-way table by classification of individuals and attributes. Cornell University 
lthaca, NY.  

Hill, M. O., Bunce, R. G. H., & Shaw, M. W. (1975). Indicator species analysis, a divisive polythetic 
method of classification and its application to a survey of native pinewoods in Scotland. 
Journal of Ecology, 63, 597 - 613.  

Hill, R. A., & Thomson, A. G. (2005). Mapping woodland species composition and structure using 
airborne spectral and LiDAR data. International Journal of Remote Sensing, 26(17), 3763-
3779. doi:10.1080/01431160500114706 

Hilton, M., Harvey, N., Hart, A., James, K., & Arbuckle, C. (2006). The impact of exotic dune grass 
species on foredune development in Australia and New Zealand: a case study of Ammophila 
arenaria and Thinopyrum junceiforme. Australian Geographer, 37(3), 313-334. 
doi:10.1080/00049180600954765 

Hilton, M. J. (2006). The loss of New Zealand's active dunes and the spread of marram grass 
(Ammophila arenaria). New Zealand Geographer, 62(2), 105-120. doi:10.1111/j.1745-
7939.2006.00054.x 

Holmes, M. P. A. (1998). The geomorphology and radar facies of Kaitorete Spit, Canterbury, New 
Zealand.  

Holyoak, M., Leibold, M. A., Mouquet, N., Holt, R. D., & Hoopes, M. (2005). A framework for large 
scale community ecology. Metacommunities: spatial dynamics and ecological communities. 
The University of Chicago Press, Chicago, 1-31.  

Hooson, S. (2015). Christchurch District Plan Site of Ecological Significance: Site Significance 
Statement. Retrieved from Christchurch, N.Z.:  

Hu, R. H., Bournez, E., Cheng, S. Y., Jiang, H. L., Nerry, F., Landes, T., . . . Yan, G. J. (2018). Estimating 
the leaf area of an individual tree in urban areas using terrestrial laser scanner and path 
length distribution model. Isprs Journal of Photogrammetry and Remote Sensing, 144, 357-
368. doi:10.1016/j.isprsjprs.2018.07.015 

Huang, C., Davis, L. S., & Townshend, J. R. G. (2002). An assessment of support vector machines for 
land cover classification. International Journal of Remote Sensing, 23(4), 725-749. 
doi:10.1080/01431160110040323 

Hugenholtz, C. H., Levin, N., Barchyn, T. E., & Baddock, M. C. (2012). Remote sensing and spatial 
analysis of aeolian sand dunes: A review and outlook. Earth-Science Reviews, 111(3-4), 319-
334. doi:10.1016/j.earscirev.2011.11.006 

Husson, E., Ecke, F., & Reese, H. (2016). Comparison of Manual Mapping and Automated Object-
Based Image Analysis of Non-Submerged Aquatic Vegetation from Very-High-Resolution UAS 
Images. Remote Sensing, 8(9), 724.  

Husson, E., Hagner, O., & Ecke, F. (2014). Unmanned aircraft systems help to map aquatic vegetation. 
Applied Vegetation Science, 17(3), 567-577. doi:10.1111/avsc.12072 

ICAO. (2012). Cir 328 AN/190 Unmanned Aircraft Systems (UAS) (Vol. 328). 999 University Street, 
Montréal, Quebec, Canada H3C 5H7: INTERNATIONAL CIVIL AVIATION ORGANIZATION. 

Irisarri, J., Oesterheld, M., Verón, S., & Paruelo, J. (2009). Grass species differentiation through 
canopy hyperspectral reflectance. International Journal of Remote Sensing, 30(22), 5959-
5975.  

Jari Oksanen, F. Guillaume Blanchet, Michael Friendly, Roeland Kindt, Pierre Legendre, Dan McGlinn, 
. . . Wagner, H. (2018). vegan: Community Ecology Package. R package version 2.5-3. 
https://CRAN.R-project.org/package=vegan 

Jeganathan, C., Dash, J., & Atkinson, P. M. (2014). Remotely sensed trends in the phenology of 
northern high latitude terrestrial vegetation, controlling for land cover change and 
vegetation type. Remote Sensing of Environment, 143(0), 154-170. 
doi:http://dx.doi.org/10.1016/j.rse.2013.11.020 

Johnson, P. N. (1992). The sand dune and beach vegetation inventory of New Zealand. II, South Island 
and Stewart Island | 1992. Christchurch, NZ: DSIR Land Resources (N.Z.). 

https://cran.r-project.org/package=vegan
http://dx.doi.org/10.1016/j.rse.2013.11.020


 101 

Jones, D., Pike, S., Thomas, M., & Murphy, D. (2011). Object-Based Image Analysis for Detection of 
Japanese Knotweed s.l. taxa (Polygonaceae) in Wales (UK). Remote Sensing, 3(2), 319-342. 
doi:10.3390/rs3020319 

Jones, G. P., Pearlstine, L. G., & Percival, H. F. (2006). An assessment of small unmanned aerial 
vehicles for wildlife research. Wildlife Society Bulletin, 34(3), 750-758. doi:10.2193/0091-
7648(2006)34[750:aaosua]2.0.co;2 

Julian, J. T., Young, J. A., Jones, J. W., Snyder, C. D., & Wright, C. W. (2009). The use of local indicators 
of spatial association to improve LiDAR-derived predictions of potential amphibian breeding 
ponds. Journal of Geographical Systems, 11(1), 89-106. doi:10.1007/s10109-008-0074-4 

Kaliraj, S., Chandrasekar, N., Ramachandran, K. K., Srinivas, Y., & Saravanan, S. (2017). Coastal 
landuse and land cover change and transformations of Kanyakumari coast, India using 
remote sensing and GIS. Egyptian Journal of Remote Sensing and Space Sciences, 20(2), 169-
185. doi:10.1016/j.ejrs.2017.04.003 

Karau, E. C., Sikkink, P. G., Keane, R. E., & Dillon, G. K. (2014). Integrating Satellite Imagery with 
Simulation Modeling to Improve Burn Severity Mapping. Environmental Management, 54(1), 
98-111. doi:10.1007/s00267-014-0279-x 

Kerr, J. T., & Ostrovsky, M. (2003). From space to species: ecological applications for remote sensing. 
Trends in Ecology & Evolution, 18(6), 299-305. doi:http://dx.doi.org/10.1016/S0169-
5347(03)00071-5 

Klosterman, S., Melaas, E., Wang, J. A., Martinez, A., Frederick, S., O’Keefe, J., . . . Richardson, A. D. 
(2018). Fine-scale perspectives on landscape phenology from unmanned aerial vehicle (UAV) 
photography. Agricultural and Forest Meteorology, 248, 397-407. 
doi:https://doi.org/10.1016/j.agrformet.2017.10.015 

Knoth, C., Klein, B., Prinz, T., & Kleinebecker, T. (2013). Unmanned aerial vehicles as innovative 
remote sensing platforms for high-resolution infrared imagery to support restoration 
monitoring in cut-over bogs. Applied Vegetation Science, 16(3), 509-517. 
doi:10.1111/avsc.12024 

Knox, N. M., Skidmore, A. K., van der Werff, H. M. A., Groen, T. A., de Boer, W. F., Prins, H. H. T., . . . 
Peel, M. (2013). Differentiation of plant age in grasses using remote sensing. International 
Journal of Applied Earth Observation and Geoinformation, 24(0), 54-62. 
doi:http://dx.doi.org/10.1016/j.jag.2013.02.004 

Koedsin, W., & Vaiphasa, C. (2013). Discrimination of Tropical Mangroves at the Species Level with 
EO-1 Hyperion Data. Remote Sensing, 5(7), 3562-3582. doi:10.3390/rs5073562 

Koh, L. P., & Wich, S. A. (2012). Dawn of drone ecology: low-cost autonomous aerial vehicles for 
conservation. Tropical Conservation Science, 5(2), 121-132.  

Komarek, J., Kloucek, T., & Prosek, J. (2018). The potential of Unmanned Aerial Systems: A tool 
towards precision classification of hard-to-distinguish vegetation types? International Journal 
of Applied Earth Observation and Geoinformation, 71, 9-19. doi:10.1016/j.jag.2018.05.003 

Kunin, W. E., & Gaston, K. J. (1993). The biology of rarity: patterns, causes and consequences. Trends 
in Ecology & Evolution, 8(8), 298-301.  

Laba, M., Blair, B., Downs, R., Monger, B., Philpot, W., Smith, S., . . . Baveye, P. C. (2010). Use of 
textural measurements to map invasive wetland plants in the Hudson River National 
Estuarine Research Reserve with IKONOS satellite imagery. Remote Sensing of Environment, 
114(4), 876-886. doi:10.1016/j.rse.2009.12.002 

Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. 
Biometrics, 159-174.  

Langley, S. K., Cheshire, H. M., & Humes, K. S. (2001). A comparison of single date and multitemporal 
satellite image classifications in a semi-arid grassland. Journal of Arid Environments, 49(2), 
401-411.  

Lantz, N. J., & Wang, J. (2013). Object-based classification of Worldview-2 imagery for mapping 
invasive common reed, Phragmites australis. Canadian Journal of Remote Sensing, 39(4), 
328-340. doi:10.5589/m13-041 

http://dx.doi.org/10.1016/S0169-5347(03)00071-5
http://dx.doi.org/10.1016/S0169-5347(03)00071-5
https://doi.org/10.1016/j.agrformet.2017.10.015
http://dx.doi.org/10.1016/j.jag.2013.02.004


 102 

Lau, A., Bentley, L. P., Martius, C., Shenkin, A., Bartholomeus, H., Raumonen, P., . . . Herold, M. 
(2018). Quantifying branch architecture of tropical trees using terrestrial LiDAR and 3D 
modelling. Trees-Structure and Function, 32(5), 1219-1231. doi:10.1007/s00468-018-1704-1 

Legendre, P., & Legendre, L. (2012a). Chapter 7 - Ecological resemblance. In L. Pierre & L. Louis (Eds.), 
Developments in Environmental Modelling (Vol. Volume 24, pp. 265-335): Elsevier. 

Legendre, P., & Legendre, L. (2012b). Chapter 8 - Cluster analysis. In P. Legendre & L. Legendre (Eds.), 
Developments in Environmental Modelling (Vol. 24, pp. 337-424): Elsevier. 

legendre, P., & legendre, L. (2012c). Chapter 9 - Ordination in reduced space. In L. Pierre & L. Louis 
(Eds.), Developments in Environmental Modelling (Vol. Volume 24, pp. 425-520): Elsevier. 

Leibold, M. A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J. M., Hoopes, M. F., . . . Gonzalez, 
A. (2004). The metacommunity concept: a framework for multi-scale community ecology. 
Ecology Letters, 7(7), 601-613. doi:doi:10.1111/j.1461-0248.2004.00608.x 

Lettink, M. (2008). Monitoring and restoration options for lizards on Kaitorete Spit, Canterbury (Vol. 
301). Wellington, N.Z.: Wellington, N.Z. : Dept. of Conservation. 

Lisita, A., Sano, E. E., & Durieux, L. (2013). Identifying potential areas of Cannabis sativa plantations 
using object-based image analysis of SPOT-5 satellite data. International Journal of Remote 
Sensing, 34(15), 5409-5428. doi:10.1080/01431161.2013.790574 

Lodge, D. M., Williams, S., MacIsaac, H. J., Hayes, K. R., Leung, B., Reichard, S., . . . McMichael, A. 
(2006). BIOLOGICAL INVASIONS: RECOMMENDATIONS FOR U.S. POLICY AND MANAGEMENT. 
Ecological Applications, 16(6), 2035-2054. doi:doi:10.1890/1051-
0761(2006)016[2035:BIRFUP]2.0.CO;2 

Lu, & Weng, Q. (2007). A survey of image classification methods and techniques for improving 
classification performance. International Journal of Remote Sensing, 28(5), 823-870. 
doi:10.1080/01431160600746456 

Lu, M. L., Huang, J. Y., Chung, Y. L., & Huang, C. Y. (2013). Modelling the invasion of a Central 
American Mimosoid tree species (Leucaena leucocephala) in a tropical coastal region of 
Taiwan. Remote Sensing Letters, 4(5), 485-493. doi:10.1080/2150704x.2012.755274 

Lunetta, R. S., & Lyon, J. G. (2004). Remote sensing and GIS accuracy assessment: CRC press. 
Magiera, A., Feilhauer, H., Otte, A., Waldhardt, R., & Simmering, D. (2013). Relating canopy 

reflectance to the vegetation composition of mountainous grasslands in the Greater 
Caucasus. Agriculture Ecosystems & Environment, 177, 101-112. 
doi:10.1016/j.agee.2013.05.017 

Manfreda, S., McCabe, M. E., Miller, P. E., Lucas, R., Madrigal, V. P., Mallinis, G., . . . Toth, B. (2018). 
On the Use of Unmanned Aerial Systems for Environmental Monitoring. Remote Sensing, 
10(4). doi:10.3390/rs10040641 

Mantero, P., Moser, G., & Serpico, S. B. (2005). Partially supervised classification of remote sensing 
images through SVM-based probability density estimation. Ieee Transactions on Geoscience 
and Remote Sensing, 43(3), 559-570.  

Marceau, D. J., Howarth, P. J., & Gratton, D. J. (1994). Remote sensing and the measurement of 
geographical entities in a forested environment. 1. The scale and spatial aggregation 
problem. Remote Sensing of Environment, 49(2), 93-104. doi:https://doi.org/10.1016/0034-
4257(94)90046-9 

Maron, J. L., & Connors, P. G. (1996). A Native Nitrogen-Fixing Shrub Facilitates Weed Invasion. 
Oecologia, 105(3), 302-312. doi:10.2307/4221187 

Martinez-Carricondo, P., Aguera-Vega, F., Carvajal-Ramirez, F., Mesas-Carrascosa, F. J., Garcia-Ferrer, 
A., & Perez-Porras, F. J. (2018). Assessment of UAV-photogrammetric mapping accuracy 
based on variation of ground control points. International Journal of Applied Earth 
Observation and Geoinformation, 72, 1-10. doi:10.1016/j.jag.2018.05.015 

Matese, A., Toscano, P., Di Gennaro, S., Genesio, L., Vaccari, F., Primicerio, J., . . . Gioli, B. (2015). 
Intercomparison of UAV, Aircraft and Satellite Remote Sensing Platforms for Precision 
Viticulture. Remote Sensing, 7(3), 2971.  

Mathieu, R., Aryal, J., & Chong, A. K. (2007). Object-based classification of ikonos imagery for 
mapping large-scale vegetation communities in urban areas. Sensors, 7(11), 2860-2880. 
doi:10.3390/s7112860 

https://doi.org/10.1016/0034-4257(94)90046-9
https://doi.org/10.1016/0034-4257(94)90046-9


 103 

Mayr, M. J., Malss, S., Ofner, E., & Samimi, C. (2018). Disturbance feedbacks on the height of woody 
vegetation in a savannah: a multi-plot assessment using an unmanned aerial vehicle (UAV). 
International Journal of Remote Sensing, 39(14), 4761-4785. 
doi:10.1080/01431161.2017.1362132 

Molloy, B. P. J., Partridge, T. R., & Thomas, W. P. (1991). Decline of tree lupin (lupinus-arboreus) on 
kaitorete spit, canterbury, new-zealand, 1984-1990. New Zealand Journal of Botany, 29(3), 
349-352.  

Morrison, J., Higginbottom, T. P., Symeonakis, E., Jones, M. J., Omengo, F., Walker, S. L., & Cain, B. 
(2018). Detecting Vegetation Change in Response to Confining Elephants in Forests Using 
MODIS Time-Series and BFAST. Remote Sensing, 10(7). doi:10.3390/rs10071075 

Motohka, T., Nasahara, K. N., Oguma, H., & Tsuchida, S. (2010). Applicability of Green-Red Vegetation 
Index for Remote Sensing of Vegetation Phenology. Remote Sensing, 2(10), 2369.  

Mountrakis, G., Im, J., & Ogole, C. (2011). Support vector machines in remote sensing: A review. Isprs 
Journal of Photogrammetry and Remote Sensing, 66(3), 247-259. 
doi:https://doi.org/10.1016/j.isprsjprs.2010.11.001 

Mucher, C. A., Kooistra, L., Vermeulen, M., Vanden Borre, J., Haest, B., & Haveman, R. (2013). 
Quantifying structure of Natura 2000 heathland habitats using spectral mixture analysis and 
segmentation techniques on hyperspectral imagery. Ecological Indicators, 33, 71-81. 
doi:10.1016/j.ecolind.2012.09.013 

Muellerova, J., Pergl, J., & Pysek, P. (2013). Remote sensing as a tool for monitoring plant invasions: 
Testing the effects of data resolution and image classification approach on the detection of a 
model plant species Heracleum mantegazzianum (giant hogweed). International Journal of 
Applied Earth Observation and Geoinformation, 25, 55-65. doi:10.1016/j.jag.2013.03.004 

Mullerova, J., Pergl, J., & Pysek, P. (2013). Remote sensing as a tool for monitoring plant invasions: 
Testing the effects of data resolution and image classification approach on the detection of a 
model plant species Heracleum mantegazzianum (giant hogweed). International Journal of 
Applied Earth Observation and Geoinformation, 25, 55-65. doi:10.1016/j.jag.2013.03.004 

Nagendra, H., Lucas, R., Honrado, J. P., Jongman, R. H. G., Tarantino, C., Adamo, M., & Mairota, P. 
(2013). Remote sensing for conservation monitoring: Assessing protected areas, habitat 
extent, habitat condition, species diversity, and threats. Ecological Indicators, 33, 45-59. 
doi:10.1016/j.ecolind.2012.09.014 

Nagler, P. L., Daughtry, C. S. T., & Goward, S. N. (2000). Plant Litter and Soil Reflectance. Remote 
Sensing of Environment, 71(2), 207-215. doi:https://doi.org/10.1016/S0034-4257(99)00082-6 

Navratil, P., & Wilps, H. (2013). Object-based locust habitat mapping using high-resolution 
multispectral satellite data in the southern Aral Sea basin. Journal of Applied Remote Sensing, 
7. doi:10.1117/1.jrs.7.075097 

Neumann, C., Itzerott, S., Weiss, G., Kleinschmit, B., & Schmidtlein, S. (2016). Mapping multiple plant 
species abundance patterns - A multiobjective optimization procedure for combining 
reflectance spectroscopy and species ordination. Ecological Informatics, 36, 61-76. 
doi:https://doi.org/10.1016/j.ecoinf.2016.10.002 

Nevalainen, O., Hakala, T., Suomalainen, J., Mäkipää, R., Peltoniemi, M., Krooks, A., & Kaasalainen, S. 
(2014). Fast and nondestructive method for leaf level chlorophyll estimation using 
hyperspectral LiDAR. Agricultural and Forest Meteorology, 198-199, 250-258. 
doi:https://doi.org/10.1016/j.agrformet.2014.08.018 

Newnham, G. J., Armston, J. D., Calders, K., Disney, M. I., Lovell, J. L., Schaaf, C. B., . . . Danson, F. M. 
(2015). Terrestrial Laser Scanning for Plot-Scale Forest Measurement. Current Forestry 
Reports, 1(4), 239-251. doi:10.1007/s40725-015-0025-5 

Newsome, P. (1987). The vegetation cover of New Zealand. Retrieved from Wellington, New Zealand:  
Norton, D. A. (1991). Scientific basis for the conservation and management of New Zealand plant 

communities. Oxford, England: Blackwell Scientific Press. 
Okin, G. S., Roberts, D. A., Murray, B., & Okin, W. J. (2001). Practical limits on hyperspectral 

vegetation discrimination in arid and semiarid environments. Remote Sensing of 
Environment, 77(2), 212-225.  

https://doi.org/10.1016/j.isprsjprs.2010.11.001
https://doi.org/10.1016/S0034-4257(99)00082-6
https://doi.org/10.1016/j.ecoinf.2016.10.002
https://doi.org/10.1016/j.agrformet.2014.08.018


 104 

Oloo, O. J. (2017). ASSESSING THE ACCURACY OF REMOTE SENSING TECHNIQUES IN VEGETATION 
FRACTIONS ESTIMATION. South African Journal of Geomatics, 6(1), 106-129. 
doi:10.4314/sajg.v6i1.7 

Olsoy, P. J., Shipley, L. A., Rachlow, J. L., Forbey, J. S., Glenn, N. F., Burgess, M. A., & Thornton, D. H. 
(2018). Unmanned aerial systems measure structural habitat features for wildlife across 
multiple scales. Methods in Ecology and Evolution, 9(3), 594-604. doi:10.1111/2041-
210x.12919 

Orwig, D. A., Boucher, P., Paynter, I., Saenz, E., Li, Z., & Schaaf, C. (2018). The potential to 
characterize ecological data with terrestrial laser scanning in Harvard Forest, MA. Interface 
Focus, 8(2), 9. doi:10.1098/rsfs.2017.0044 

Otukei, J. R., & Blaschke, T. (2010). Land cover change assessment using decision trees, support 
vector machines and maximum likelihood classification algorithms. International Journal of 
Applied Earth Observation and Geoinformation, 12, S27-S31. 
doi:https://doi.org/10.1016/j.jag.2009.11.002 

Ouyang, Z. T., Gao, Y., Xie, X., Guo, H. Q., Zhang, T. T., & Zhao, B. (2013). Spectral Discrimination of 
the Invasive Plant Spartina alterniflora at Multiple Phenological Stages in a Saltmarsh 
Wetland. PLoS ONE, 8(6). doi:10.1371/journal.pone.0067315 

Pajares, G. (2015). Overview and Current Status of Remote Sensing Applications Based on Unmanned 
Aerial Vehicles (UAVs). Photogrammetric Engineering & Remote Sensing, 81(4), 281-329. 
doi:https://doi.org/10.14358/PERS.81.4.281 

Paneque-Galvez, J., McCall, M. K., Napoletano, B. M., Wich, S. A., & Koh, L. P. (2014). Small Drones for 
Community-Based Forest Monitoring: An Assessment of Their Feasibility and Potential in 
Tropical Areas. Forests, 5(6), 1481-1507. doi:10.3390/f5061481 

Partridge, T. R. (1992). Vegetation recovery following sand mining on coastal dunes at kaitorete spit, 
canterbury, new-zealand. Biological Conservation, 61(1), 59-71. doi:10.1016/0006-
3207(92)91208-a 

Patrick, B. (1994). Lepidoptera of Kaitorete Spit, Canterbury. New Zealand Entomologist, 17, 52-63.  
Peace, M. (1975). The Plant Ecology of the Dune System on Kaitorete Spit: A Thesis Presented for the 

Degree of M. Sc. in Botany in the University of Canterbury, Christchurch, New Zealand. 
University of Canterbury.    

Pearson, R. L., & Miller, L. D. (1972). Remote Mapping of Standing Crop Biomass for Estimation of the 
Productivity of the Shortgrass Prairie. Paper presented at the Proceedings of the Eighth 
International Symposium on Remote Sensing of Environment, Pawnee National Grasslands, 
Colorado. 

Pegman, A. P. M., & Rapson, G. L. (2005). Plant succession and dune dynamics on actively prograding 
dunes, Whatipu Beach, northern New Zealand. New Zealand Journal of Botany, 43(1), 223-
244.  

Pettorelli, N., Safi, K., & Turner, W. (2014). Satellite remote sensing, biodiversity research and 
conservation of the future: The Royal Society. 

Pettorelli, N., Vik, J. O., Mysterud, A., Gaillard, J.-M., Tucker, C. J., & Stenseth, N. C. (2005). Using the 
satellite-derived NDVI to assess ecological responses to environmental change. Trends in 
Ecology & Evolution, 20(9), 503-510. doi:https://doi.org/10.1016/j.tree.2005.05.011 

Pickart, A. J. (2004). Introduced yellow bush lupin ( L. arboreus) in coastal dunes of Northern 
California. 

Pihur, Datta, & Datta. (2018). RankAggreg: Weighted Rank Aggregation (Version R package version 
0.6.5). Retrieved from https://CRAN.R-project.org/package=RankAggreg 

Platt, R. V. (2014). Wildfire hazard in the home ignition zone: An object-oriented analysis integrating 
LiDAR and VHR satellite imagery. Applied Geography, 51, 108-117. 
doi:10.1016/j.apgeog.2014.03.011 

Price, K. P., Guo, X., & Stiles, J. M. (2002). Optimal Landsat TM band combinations and vegetation 
indices for discrimination of six grassland types in eastern Kansas. International Journal of 
Remote Sensing, 23(23), 5031-5042.  

https://doi.org/10.1016/j.jag.2009.11.002
https://doi.org/10.14358/PERS.81.4.281
https://doi.org/10.1016/j.tree.2005.05.011
https://cran.r-project.org/package=RankAggreg


 105 

Pu, R., Landry, S., & Yu, Q. (2011). Object-based urban detailed land cover classification with high 
spatial resolution IKONOS imagery. International Journal of Remote Sensing, 32(12), 3285-
3308. doi:10.1080/01431161003745657 

Pudji, W. (1997). Floristic variation and environmental relationships of sand dune communities at 
Kaitorete Spit Scientific Reserve. Lincoln University.    

Pullanagari, R. R., Kereszturi, G., & Yule, I. J. (2017). Quantification of dead vegetation fraction in 
mixed pastures using AisaFENIX imaging spectroscopy data. International Journal of Applied 
Earth Observation and Geoinformation, 58, 26-35. 
doi:https://doi.org/10.1016/j.jag.2017.01.004 

Pyorala, J., Liang, X. L., Vastaranta, M., Saarinen, N., Kankare, V., Wang, Y. S., . . . Hyyppa, J. (2018). 
Quantitative Assessment of Scots Pine (Pinus Sylvestris L.) Whorl Structure in a Forest 
Environment Using Terrestrial Laser Scanning. Ieee Journal of Selected Topics in Applied Earth 
Observations and Remote Sensing, 11(10), 3598-3607. doi:10.1109/jstars.2018.2819598 

Pysek, P., & Richardson, D. M. (2010). Invasive Species, Environmental Change and Management, and 
Health. In A. Gadgil & D. M. Liverman (Eds.), Annual Review of Environment and Resources, 
Vol 35 (Vol. 35, pp. 25-55). Palo Alto: Annual Reviews. 

Qi, J., & Wallace, O. (2002). Biophysical attributes estimation from satellite images in arid regions. 
Paper presented at the Geoscience and Remote Sensing Symposium, 2002. IGARSS'02. 2002 
IEEE International. 

R Core Team. (2018). R: A language and environment for statistical computing. Vienna, Austria. 
Retrieved from URL https://www.R-project.org/. 
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